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Normal liver enzymes are 
correlated with severity of 
metabolic syndrome in a large 
population based cohort
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Hagen Kälsch3, Jan-Peter Sowa1, Susanne Moebus4, Uta Slomiany4, Karl-Heinz Jöckel4, 
Raimund Erbel3, Guido Gerken1 & Ali Canbay1

Key features of the metabolic syndrome are insulin resistance and diabetes. The liver as central 
metabolic organ is not only affected by the metabolic syndrome as non-alcoholic fatty liver disease 
(NAFLD), but may contribute to insulin resistance and metabolic alterations. We aimed to identify 
potential associations between liver injury markers and diabetes in the population-based Heinz 
Nixdorf RECALL Study. Demographic and laboratory data were analyzed in participants (n = 4814, 
age 45 to 75y). ALT and AST values were significantly higher in males than in females. Mean BMI 
was 27.9 kg/m2 and type-2-diabetes (known and unkown) was present in 656 participants (13.7%). 
Adiponectin and vitamin D both correlated inversely with BMI. ALT, AST, and GGT correlated with 
BMI, CRP and HbA1c and inversely correlated with adiponectin levels. Logistic regression models 
using HbA1c and adiponectin or HbA1c and BMI were able to predict diabetes with high accuracy. 
Transaminase levels within normal ranges were closely associated with the BMI and diabetes risk. 
Transaminase levels and adiponectin were inversely associated. Re-assessment of current normal 
range limits should be considered, to provide a more exact indicator for chronic metabolic liver 
injury, in particular to reflect the situation in diabetic or obese individuals.

The liver as central organ for glucose and lipid metabolism is strongly affected by the metabolic syn-
drome. Thus, non-alcoholic fatty liver disease (NAFLD) represents the hepatologic consequence of 
Western lifestyles. NAFLD is the most common chronic liver disease in industrialized nations with a 
prevalence of up to 30% and probably the most common cause of elevated liver enzymes1,2. According 
to the National Health and Nutrition Examination Survey, the prevalence of major causes of chronic 
liver diseases remained stable from the years 1988 to 2008 except for NAFLD. Incidence of NAFLD 
increased steadily during this time, contributing to the burden of chronic liver disease in the United 
States3. NAFLD is associated with obesity as well as diabetes and could be not only a result of insulin 
resistance (IR) and metabolic syndrome but rather a major contributor to systemic IR4,5. NAFLD ranges 
from simple hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) with hepatocyte balloon-
ing and inflammatory components. Simple hepatic steatosis generally has a good prognosis, however 
NASH can lead to cirrhosis and hepatocellular carcinoma (HCC) in up to 15% of patients6. Metabolic 
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injury to the liver will probably constitute a major burden for health care systems worldwide in the near 
future.

By now the metabolic syndrome is a common term and high cholesterol, high blood pressure, or 
obesity raise the attention of internists regarding the risk for cardiovascular or metabolic complications. 
Though, despite the very obvious link of NAFLD and metabolic syndrome, the awareness of metabolic 
liver injury and its connection to cardiovascular risk remains low. Several studies have shown, that nor-
mal transaminase levels do neither exclude NAFLD (or NASH) nor progression to advanced fibrosis7,8. 
However, aminotransferases are regarded as the main alarm signal for liver diseases or injury before 
enrolling further diagnostic. Previous studies already discuss the idea to lower normal values and to take 
metabolic factors into account, especially body mass index (BMI) and sex, which have a significant effect 
on ALT values9–11. Since the origin of obesity may be based in early childhood, hepatologists already 
claim to revise the values in pediatrics11. Still the classic liver serum parameters (ALT, AST, GGT), ele-
vated in most chronic and acute liver diseases, may not be ideal markers for liver injury in NAFLD.

Liver function is crucial for glucose- and fatty acid metabolism and vice versa12. Enzymes and sig-
naling pathways involved in hepatic glucose homeostasis contribute to insulin sensitivity. Reciprocally 
peripheral IR and lipolysis contribute to hepatic steatosis13,14. Other factors known to contribute to sys-
temic IR and to development of NAFLD are adipokines such as adiponectin. Low adiponectin is associ-
ated with obesity, IR, and severity of NAFLD15–17. Vitamin D (VD) is also discussed to play an important 
role in the pathophysiology of IR and VD serum concentrations above 25 ng/ml were associated with a 
lower risk of type 2 diabetes18.

In the present study we aimed to investigate in a large population based cohort, whether serum 
transaminase levels within normal ranges are associated with metabolic risk and prevalence of diabetes. 
Associations of adiponectin, systemic inflammation, and VD levels with transaminases and diabetes were 
analyzed. Previously we were able to generate effective classification models by machine learning tech-
niques19–21. Thus, we also aimed to build a model for diabetes prediction from non-invasive parameters.

Results
Demographic data.  The initial cohort included 4814 participants (2419 female), aged 45 to 75 years 
(female 59.6 ±  7.8y, male 59.7 ±  7.8y). Detailed demographics are given in Table 1. Men exhibited signif-
icantly higher weight (86.2 ±  13.2 kg; p <  0.0001) and waist circumference (100.3 ±  10.8 cm; p <  0.0001) 
than women. The mean BMI of the cohort was 27.9 kg/m2, suggesting large parts of this population to 
be overweight or obese. Both women and men were considered overweight by BMI, with men reaching 
higher values (m: 28.2 ±  4.0 kg/m2 vs. w: 27.7 ±  5.2 kg/m2; p <  0.0001). Type 2 diabetes was present in 656 
individuals of the HNR cohort (13.7%; Fig. 1). Thereof 397 (8.2%) had previously known type 2 diabetes 
and 259 (5.4%) had unknown diabetes. Type 2 diabetes was more common in men with 418 (17.5%) 
male subjects affected compared to 238 female subjects (9.8%). The highest proportion of diabetes was 
found in subjects with BMI above 40 (approx. 45%).

Transaminase levels in the HNR Study Cohort were within normal limits, but gradually 
increase with BMI.  Mean ALT (16 ±  8.8 U/l) and mean AST (13 ±  4.6 U/l) remained both well below 
the common threshold for normal values (< 50 U/l for males; < 35 U/l for females). ALT was significantly 

Male 
(n = 2395)

Female 
(n = 2419)

age (y) 59.7 ±  7.8 59.6 ±  7.8

height (cm) 174.8 ±  6.8 162.1 ±  6.2***

weight (kg) 86.2 ±  13.2 72.6 ±  13.8***

BMI (kg/m2) 28.2 ±  4.0 27.7 ±  5.2***

waist circumference (cm) 100.3 ±  10.8 88.5 ±  12.9***

Diabetes n (%) 418 (17.5) 238 (9.8)***

smoking status

current 614 (25.6%) 514 (21.3%)

former 1105 (46.1%) 557 (23.0%)

never 669 (27.9%) 1345 (55.6%)

Table 1.   Demographic data of the analyzed study cohort (Heinz Nixdorf Recall). *** p <  0.0001 vs. males.
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higher in male subjects than in females (19 ±  9.7 U/l vs. 14 ±  7.1 U/l; p <  0.0001), which was also observ-
able for AST (14 ±  4.8 U/l vs. 12 ±  4.2 U/l; p <  0.0001; Fig. 2).

Subjects were grouped by BMI according to common ranges for underweight, normal weight, over-
weight, and obesity grades I-III. Serum concentrations of ALT and GGT tended to be higher in higher 
BMI ranges, though this trend did not reach significance (Fig.  2). Moreover, even in the highest BMI 
group (> 40 kg/m2) the mean concentrations were still within normal ranges. A comparison of demo-
graphic and metabolic data of individuals with ALT in normal ranges and those with elevated ALT is 
given in Supplementary Table 1. AST levels were similar in all BMI groups.

Adiponectin and vitamin D levels are inversely correlated with BMI.  For all BMI groups VD 
was around the threshold for a deficit. Only in the highest BMI category (above 40 kg/m2) the mean 
VD values indicated a true deficit (< 20 ng/ml; Fig. 3A). Slightly higher VD levels were found in males 
compared to females. Serum adiponectin, an adipocytokine with known hepatoprotective and insulin 
sensitizing properties22–24, was low (< 15 μ g/ml) in all BMI groups. The lowest concentrations were again 
observed in the highest BMI group (Fig. 3B). Female subjects exhibited higher adiponectin levels than 
males. While no significant differences between BMI groups were observed for adiponectin and VD, both 
parameters correlated inversely with BMI (Table 2).

Transaminase levels correlate with BMI and HbA1c, while adiponectin was inversely corre-
lated with transaminase levels.  ALT, AST, and GGT correlated positively with BMI (Table 2). To 
link transaminase levels with a surrogate parameter of IR, HbA1c was quantified in this cohort. ALT, 
AST, and GGT significantly correlated with HbA1c. In contrast, adiponectin was inversely correlated 
with AST, ALT, and GGT. Interestingly, GGT was significantly associated with CRP, a marker of systemic 
inflammation and associated with obesity, linking hepatocellular injury to systemic inflammation.

HbA1c, adiponectin, and BMI are efficient predictors of diabetes in the HNR study cohort.  
Utilizing machine learning techniques a computational model was built to identify the most important 
parameters for prediction of diabetes from the available serum parameters. The model identified HbA1c, 
adiponectin, and BMI as highly important for the prediction of diabetes (Table 3). These were followed 
by GGT, vitamin D, and transaminases. Logistic regression models were built, using HbA1c, adiponec-
tin, and/or BMI to predict diabetes from the presented cohort. The model using all three parameters 
(HbA1c, adiponectin and BMI) as well as the reduced models reached AUC values of 0.85. A model 
using only HbA1c reached an AUC of 0.83. The ROC curves of the models HbA1c and BMI, HbA1c 
and adiponectin and HbA1c only are shown in Fig.  4. Comparing the AUC values by the method of 
De Long et al.25, it turned out that both, the model of HbA1c +  BMI and HbA1c +  adiponectin have 
significant higher AUC values compared to the model that uses only HbA1c (p <  0.001). The differences 

Figure 1.  Prevalence of diabetes in the Heinz Nixdorf Recall study by BMI groups. Diabetes was present 
in below 20% of males and below 10% in females of all BMI groups up to 40 kg/m2. In the highest BMI 
group (obesity grade III; > 40 kg/m2) more than 50% male subjects and almost 40% female subjects had 
overt diabetes.
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between the AUC values of the models HbA1c +  BMI and HbA1c +  adiponectin were not significant 
(p =  0.7044). By comparing the models at FPRs of 0.1, 0.05, and 0.001 using McNemar’s tests, both, the 
model using HbA1c +  adiponectin as well as the model using HbA1c +  BMI showed significant differ-
ences at FPR =  0.05 (p <  0.001 and p =  0.002, respectively) compared to the model using only HbA1c. 
However, only the model using HbA1c and adiponectin showed significant differences for very low FPRs 
(FPR =  0.01, p =  0.005). A model using HbA1c, adiponectin and BMI did not significantly improve the 
overall performance compared to the models that use only two parameters. Adding the parameters GGT 
and vitamin D did not significantly improve the models further (not shown).

Discussion
Metabolic syndrome is alongside the obesity epidemic of industrialized countries increasingly common. 
It is hardly surprising that in parallel NAFLD has become the most predominant chronic liver disease in 
Europe26 with up to 75% of NAFLD patients suffering from diabetes27. Mild elevations of aminotrans-
ferases are a common finding in NAFLD28, though in over 25% of patients with advanced NAFLD and 
NASH, transaminase levels remain within normal levels7. In the presented cohort a very low proportion 
of transaminase levels above normal limits were detected (< 2% for ALT). Though, with increasing BMI 
a parallel increase in ALT and GGT levels was observed. Mean BMI of the cohort suggests a substan-
tial proportion of the population is overweight or obese. Moreover, overt type 2 diabetes was found 
in roughly 14%, while current German cross-sectional studies indicate a prevalence of approximately 
7.2% in the general population29,30, though in these cases only known diabetes was taken into account. 
This data suggests that a relevant proportion of the analyzed collective may have undiagnosed meta-
bolic syndrome. These individuals are at a greater risk to develop NASH and consecutively cirrhosis or 
HCC31. The main indicator to enroll further diagnostics for liver injury in clinician’s daily routine are 
liver transaminases. Thus, current normal values might miss a significant amount of individuals already 

Figure 2.  Distribution of classic serum liver parameters in the Heinz Nixdorf Recall study by BMI 
groups. Alanine aminotransferase (ALT/GPT) and gamma Glutamyltransferase (GGT) exhibited a trend of 
increased concentrations with higher BMI. Aspartate aminotransferase (AST/GOT) showed no differences 
between the BMI groups.
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developing chronic metabolic liver disease and presenting with transaminase values in the upper normal 
levels32,33.

Despite mostly marginal elevations in patients with overweight and obesity, serum liver enzymes have 
previously been associated to metabolic syndrome or its components. In the Cyprus Metabolism study, 
Liu et al. demonstrated a clear association between ALT and GGT with metabolic risk factors, including 
IR34. Similar associations between transaminase levels and diabetes have been shown, however, data is still 
scarce35. ALT, AST, and GGT in the presented cohort were each correlated with HbA1c levels and BMI. 
Additionally, GGT was associated with CRP, suggesting a connection to systemic inflammation beyond 
metabolic associations. This may support previous suggestion of GGT as biomarker for atherosclerosis36. 

Figure 3.  Distribution of metabolic serum markers in the Heinz Nixdorf Recall study by BMI groups. 
(A) Vitamin D serum levels were close to the threshold to insufficiency (20 ng/ml) in all BMI groups 
< 40 kg/m2. In the highest BMI group (> 40 kg/m2) the lowest vitamin D values were observed, with a mean 
concentration indicating insufficiency. (B) Adiponectin was distributed in a similar way as vitamin D with 
lowest serum concentrations found in the highest BMI group.

Parameters r p

BMI Adiponectin − 0.2195 < 0.0001

BMI Vitamin D − 0.1243 < 0.0001

BMI ALT/GPT 0.2399 < 0.0001

BMI AST/GOT 0.127 < 0.0001

BMI GGT 0.1221 < 0.0001

HbA1c ALT/GPT 0.1237 < 0.0001

HbA1c AST/GOT 0.0448 < 0.01

HbA1c GGT 0.0907 < 0.0001

HbA1c Adiponectin − 0.1456 < 0.0001

HbA1c Vitamin D − 0.0678 < 0.0001

GGT CRP 0.0798 < 0.0001

Diabetes ALT/GPT 0.1394 (rpb) < 0.0001

Diabetes AST/GOT 0.0973 < 0.0001

Diabetes GGT 0.1362 < 0.0001

Table 2.   Correlations of classic liver serum markers and metabolic parameters in the Heinz Nixdorf 
Recall study population.
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Although classic serum markers for liver damage were not elevated above normal ranges, higher values 
may still indicate metabolic alterations or even injury by IR and diabetes.

Apart from the classic serum parameters for liver injury, markers related to the metabolic syndrome 
might be more valuable to assess damage to the liver in this particular setting. Among possible candidates 
is adiponectin, an adipose tissue derived adipokine with insulin sensitizing properties, found reduced in 
obesity. Several study groups elucidated the importance of adiponectin for diabetes37,38. Adiponectin was 
shown to increase the insulin-induced tyrosine phosphorylation of the insulin receptor in skeletal mus-
cle as well as to increase whole-body sensitivity to insulin39. Hui et al. found that hypoadiponectinemia 
predicts carotid intima media thickness progression, independent of known predictive factors such as 
age, smoking, hyperlipidemia, and hypertension40. Carotid intima thickness is associated with diabetes 
and NAFLD41,42. In the present study serum adiponectin concentrations were inversely correlated to BMI 
and classic parameters of liver damage. Moreover, adiponectin was one of three most important factors 
for random forests to predict diabetes from serum derived markers. Interestingly performance of logistic 
regression models to predict diabetes with simple parameters was almost similar for HbA1c +  adiponec-
tin and HbA1c +  BMI. Addition of both parameters to the model (HbA1c, adiponectin, and BMI) did 
not further improve the performance. This result suggests, that adiponectin may represent an objective 
marker for adipocyte function, with similar relevance as BMI. Moreover, the differences between the 

Parameter
Mean decrease of Gini 

impurity* SD4

HbA1c 189.69 5.01

Adiponectin 67.72 3.43

BMI1 63.49 3.11

GGT2 55.47 2.70

Vitamin D 50.98 1.63

CRP3 46.43 1.65

ALT 41.43 1.42

AST 34.07 1.40

Table 3.   Importance of parameters for diabetes prediction from the Heinz Nixdorf Recall cohort. *The 
Gini impurity gives an estimate, which parameters are most important for the random forest to predict the 
condition of interest (in this case: diabetes). A higher decrease of the Gini impurity represents a higher 
importance for this parameter. 1: Body mass index; 2: gamma-Glutamyltranerase; 3:C-reactive protein;  
4: standard deviation.

Figure 4.  ROC curves of the logistic regression models generated from non-invasive markers. The 
models generated from serum markers and BMI (see table 3 for list) were able to predict diabetes with a 
high accuracy.
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models HbA1c and HbA1c +  adiponectin were also significant at very low FPRs, while this was not true 
for HbA1c +  BMI. Thus the HbA1c +  adiponectin model should be preferred in settings where a very 
high specificity is needed. Generally BMI can be determined easier, faster and cheaper than adiponec-
tin. Though, there are cases (i.e. in highly trained athletes, very small or very large individuals), where 
BMI is not a reliable estimate for body composition (or adipocyte function)43,44, although it is a valid 
estimate in most situations. This might explain the slightly better performance of adiponectin, which 
needs confirmation in larger studies. Collection of adiponectin data in large cohorts may also enhance 
our understanding of this marker for adipocyte function and mechanisms leading from obesity to insulin 
resistance and metabolic syndrome.

Another factor associated with metabolic syndrome is vitamin D, which was found reduced in obesity 
and has been linked to type 1 and 2 diabetes45–47. Histological and clinical stages of NAFLD have also 
been associated with VD levels in several studies48. However, these observations could not be confirmed 
as causal relationship in some studies49,50. Among other factors this might be due to the highly complex 
interaction of the VD and the TGF-β  pathway51. In particular polymorphisms in the VD receptor gene 
might impact the influence of VD on liver disease progression52. Additionally VD supplementation has 
been shown to affect adipocytokine levels53. This effect might contribute indirectly to the association of 
low VD with adverse metabolic profiles. In the HNR cohort we were able to show an association between 
VD levels and serum ALT and AST. VD was also among possible relevant predictors of diabetes. Taken 
together serum markers related to metabolic syndrome, as adiponectin or VD, can predict prevalence of 
diabetes in a population based cohort. Moreover, these parameters might also represent candidates for 
non-invasive markers of NAFLD or NASH. Due to the correlation to classic liver damage markers, even 
within normal ranges, and the connection to the metabolic syndrome further studies are warranted to 
elucidate the potential of adipokines and VD to assess metabolic liver injury.

In summary a strong association between transaminase levels, BMI, adiponectin, VD, and diabetes 
was found in the HNR study. This association was present despite transaminase concentrations within 
normal range. Adiponectin and HbA1c can predict diabetes with high accuracy in this population based 
cohort. Re-assessment of current normal range limits should be considered for classic liver transaminases 
to provide an improved focus concerning chronic metabolic liver injury. Adipokines or other markers 
related to the metabolic syndrome should be evaluated as possible NAFLD-specific liver injury markers, 
especially in individuals at risk for metabolic syndrome.

Patients and Methods
Study population.  The Heinz Nixdorf Recall (HNR) Study is an ongoing population-based prospec-
tive cardiovascular cohort study of the Ruhr area in Germany. Random samples of the general popu-
lation were drawn from residents’ registration offices including both genders aged 45–75 years. People 
were invited by mail (one invitational letter plus a maximum of two reminder letters) and phone calls 
to participate. Most people decided to participate after one invitational letter (52.6%)54. Blood tests were 
performed in fasting state, risk factors for coronary artery disease were analyzed by standardized ques-
tionnaires. A detailed description of the study design and population has been published previously55. 
Informed consent was obtained from the included participants. The study protocol conformed to the eth-
ical guidelines of the 1975 Declaration of Helsinki and was approved by the institution’s human research 
committee (Ethikkommission am Universitätsklinikum Essen).

Diabetes mellitus was defined as a prior physician diagnosis of diabetes or taking an anti-diabetic 
drug. Unknown diabetes was considered when (1) fasting glucose was ≥ 7.0 mmol/L (60% of study 
participants with fasting status) or random blood glucose ≥ 11.1 mmol/L (remaining subjects with less 
than 8 hours non-fasting status) and (2) subjects had not reported a diagnosed diabetes or antidiabetic 
medication. For the purpose of the present study known diabetes and unknown diabetes were grouped 
together as “diabetes”.

Statistical data analysis and mathematic models.  For correlation analyses Pearson 
product-moment correlation r, point-biserial correlation coefficient rpb, and the phi coefficient φ  were 
employed, depending on the type of parameters used (quantitative or dichotomous).

Random forests (RFs) we used to identify the most important parameters for the prediction of diabe-
tes. We used the RF implementation in the R package randomForest (http://www.r-project.org/). Earlier 
studies have shown that RFs are excellent non-linear classifiers, which are highly stable and robust in 
comparison to other classifiers19,20. Additionally, RFs provide an importance analysis, which can be 
used to identify the most important positions for the classification process. The theoretical complex-
ity of the random forest is Θ (MKÑlog2Ñ), which is based on the complexity of building single trees 
(Θ (KNlog2N)), with K: the number of variables at each node, N: the number of samples. Due to the 
fact that the random forests use bootstrap replicates, N is reduced to Ñ =  0.632N. However, a random 
forest uses M randomized trees (bagging). In the current study, we used the random forests only for 
variable importance measurement, thus they have only been calculated once and are not used for pre-
diction. For the importance analysis in our dataset the random forest needed 4 seconds on an Intel-Core 
i7-4700MQ CPU @ 2.40 Ghz. To reduce the bias due to the class imbalance in the dataset, we repeated 
sub-sampling for 100 times56. The most important parameters were then used to build logistic regression 
models to identify patients with diabetes (as defined above) within the analyzed cohort. For evaluation 

http://www.r-project.org/
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of the models, we calculated the Receiver Operating Characteristics (ROC) and the corresponding Area 
Under the Curve (AUC) from a leave-one-out cross-validation. For comparisons between the different 
models we used the method of De Long et al. on the AUC values as well as McNemar’s tests at certain 
false-positive rates (FPR), namely 0.01, 0.05, and 0.1.
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