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Spatial correlations and optical 
properties in three-dimensional 
deterministic aperiodic structures
Michael Renner1 & Georg von Freymann1,2

Photonic systems have strongly varying optical properties depending on the spatial correlations 
present in a given realization. In photonic crystals the correlations are spatially periodic forming 
Bravais lattices whereas the building blocks of an amorphous medium are randomly distributed 
without any long-range order. In this manuscript we study the optical properties of so-called 
deterministic aperiodic structures which fill the gap between the aforementioned two limiting 
cases. Within this group we vary the spectrum of the spatial correlations from being pure-point over 
singularly-continuous to absolutely-continuous. The desired correlations are created in direct-laser 
written three-dimensional polymer structures using one construction principle which allows us to 
attribute the optical behaviour solely to the encoded spectrum. Infrared reflection measurements 
reveal the characteristic response of each spectral type verifying the successful fabrication of 
large deterministic aperiodic structures. To prove the presence of the correlations in all directions 
we perform transmission experiments parallel to the substrate by means of micro-optical mirrors 
placed next to the structures. Transport measurements reveal a strong dependence of the effective 
beam width at the output facet on the encoded lattice type. Finally, we reproduce the lattice type 
dependent transport behavior in numerical calculations ruling out extrinsic experimental reasons for 
these findings.

The purely mathematical studies of aperiodic tilings in the 1970s soon became a matter of practical 
importance when in 1984 Shechtmann et al. discovered a metal alloy having long-range order but lacking 
translational symmetry1,2. In the wake of this unexpected discovery Levine and Steinhardt3 introduced 
the concept of quasicrystals which marks the beginning of a new field in solid-state physics. Quasicrystals 
belong to the broader class of deterministic aperiodic (DA) systems considered intermediate between the 
crystalline and amorphous state. Generally, one can classify DA systems by its lattice spectrum of which 
there are three fundamental types given by Lebesgue’s decomposition theorem: pure-point spectra as in 
the case of all quasicrystals, furthermore singularly-continuous and absolutely-continuous spectra4. The 
latter spectral type also applies to completely random distributions. To unveil relations between these 
different kinds of aperiodic lattices and the resulting physical properties model Hamiltonians have been 
used in nearest-neighbour, tight-binding approximations5. Such theoretical studies found that aperiodic 
potentials derived from self-similar sequences of pure-point and singularly-continuous type have an 
energy spectrum of infinitely many gaps and zero bandwidth of allowed states. Thus, the energy spec-
trum itself is singularly-continuous. However, the nature of the energy spectrum for systems based on 
absolutely-continuous DA sequences is not fully resolved yet6. Besides theoretical investigations there 
are plenty of experimental studies concerning DA systems. In addition to experiments on electronic 
excitations7,8 the study of optical DA systems received increasing attention, mainly due to absence of 
interfering electron-electron interactions9. One-dimensional systems in the form of multilayer stacks 
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are the most frequent experimental realization10,11 followed by systems with aperiodic order extending 
across a plane12,13. Fabricating three-dimensional DA systems is a very challenging task. Nevertheless, 
quasicrystals of relatively small thickness have been fabricated using stereolithography, optical inter-
ference holography and direct laser writing (DLW)14–16. Technological advances in DLW have enabled 
samples of increasing thickness as shown in a recent study on large-sized DA structures with pure-point 
and absolutely-continuous lattice spectra17. Here, we expand on this work by including structures of 
singularly-continuous type in order to present a comprehensive study of the optical properties of DA 
photonic systems. Additionally, we investigate the question how structures containing correlations drawn 
from a stochastic process compare to structures derived from the Rudin-Shapiro sequence as both share 
an absolutely-continuous spectrum but have different topological entropy4.

Lattices of all three possible spectral types can be conveniently generated by means of substitution 
sequences. Iteratively applying the rule ωFI:A→ AB, B→ A starting from the letter A one obtains the 
Fibonacci sequence with a pure-point spectrum whereas the rule ωTM:A→ AB, B→ BA leads to the 
singularly-continuous Thue-Morse sequence. Using ωRS:AA→ AAAB, AB→ AABA, BA→ BBAB, 
BB→ BBBA produces the Rudin-Shapiro sequence which has an absolutely-continuous spectrum18. To 
assemble a three-dimensional entity from these sequences we start from a simple cubic crystal. We suc-
cessively assign the letters of the chosen sequence to the intervals of the (100) planes and change all 
intervals being labelled A to a certain value lA and all intervals labelled B to lB. The same modifications 
are made to the (010) as well as the (001) planes. We choose the ratio of the two different lengths to equal 
the golden mean l l 1 5 2 1 618B A τ/ = = ( + )/ .

. This choice leads to the canonical Fibonacci struc-
ture having the additional property of self-similarity19.

Experimental section
The three-dimensional DA structures are realized by solidifying all aperiodically arranged planes {100} 
in a negative-tone liquid resist using a commercial direct laser writing system (IP-DIP and Photonic 
Professional, Nanoscribe GmbH). The written planes contain intended perforations allowing the devel-
oper to wash away the non-solidified resist17. Hence, the resulting refractive index contrast is that of pol-
ymer (n =  1.55) to air. With lA =  0.84 μ m and lB =  lA·τ  ≃  1.359 μ m we choose the smallest possible values 
for our lithographic system in order to shift the spectral response to shorter wavelengths. All structures 
under investigation have the same footprint of about 70 μ m and are fabricated on top of a base allowing 
for uniform shrinkage of the polymer during the development step (Fig. 1).

One direct way of comparing the optical properties of different lattice types is to measure the reflec-
tance from the DA structures. The measurements are performed with short- and mid-wavelength infra-
red light using a Fourier-transform infrared spectrometer (FTIR, Bruker Vertex 70v). To avoid spectral 
smoothing by angle-averaging the numerical aperture of the Cassegrain objective is reduced to an half 
opening angle of about 7.5° using a normal incidence geometry. The results for structures of identical 
thickness d =  73 μ m are shown in Fig. 2  a–d. The most noticeable difference can be observed between 
the reflectance from Fibonacci and Rudin-Shapiro structures. While the former has a series of promi-
nent peaks with up to 50% reflectance, the latter shows a homogenous response over the whole spectral 
range with only minor peaks – a behavior which is shared with the structure containing random cor-
relations. This similarity is not unexpected since both have an absolutely-continuous lattice spectrum. 
In contrast, the spectral response of the Fibonacci structure is already fully developed showing strong 
reflectance form a set of hierarchically arranged pseudo stop bands which are related to the most sig-
nificant coefficients in the quasi crystalline structure factor18. The spectral positions and the relative 
heights of the peaks at longer wavelengths than the fundamental reflection (λ =  2.2 μ m) can be well 
described by 1-dimensional scattering matrix calculations of a multilayer stack (not shown). At shorter 
wavelengths this model fails indicating increasing scattering out of the initial propagation direction. The 
reflectance from the singularly-continuous Thue-Morse structure can be characterized as being inter-
mediate between the reflectance from the Fibonacci and Rudin-Shapiro structure. It still contains peaks 
of reasonable strength as in the case of the Fibonacci structure but these appear on a relatively broad 
background. Generally, the fabricated structures show some polymeric absorption in the investigated 
spectral range. However, the main absorption regions around λ =  2.83 μ m and λ =  3.38 μ m have no or 
little influence on the reflectance spectra.

To prove that the DA structures are truly three-dimensional we measure the transmittance along two 
orthogonal directions within our samples. The direction parallel to the substrate is accessed by means 
of micro-optical mirrors fabricated next to the DA structures in a single direct laser writing step (see 
Fig. 1c). The micro-optical mirrors consist of cubes cut into halves along a surface diagonal and rely on 
total internal reflection (TIR). For our illumination geometry with an half opening angle of 7.5° more 
than 90% of the incoming light is below the critical angle (θc =  40.2°). Any remaining spectral features 
of the micro-optics are removed from the obtained transmittance spectra by referencing against a pair 
of empty mirrors.

First, we compare the transmittance of a Fibonacci structure along two perpendicular directions. The 
spectrum obtained normal and parallel (Fig. 2e) to the substrate shows pronounced dips down to zero 
transmittance and a similar overall trend. However, the spectral positions of the main gaps of the trans-
mittance normal to the substrate appear blue-shifted by approximately 70 nm and the spectral features 
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Figure 1.  Deterministic aperiodic structures. (a) Scanning electron micrograph of a 30 μ m thick 3D 
Fibonacci tiling fabricated on top of a base to release shrinkage induced strain. (b) Same structures as 
(a) after filling of the base allowing well-defined excitation in transmission experiments. (c) Structure in 
between micro optical mirrors for excitation in the direction parallel to the substrate. The side lengths of the 
half cubes are 70 μ m and 80 μ m for the bottom-to-side and the side-to-top mirrors, respectively.
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below 2 μ m are clearly smoothed out compared to spectrum obtained parallel to the substrate. These 
differences in the spectra are likely caused by the anisotropy of the structure itself. Due to the ellipsoidal 
“writing pen” oft the DLW system the two directions normal and parallel to the substrate are no longer 
equivalent in terms of an average refractive index. While the direction parallel to the substrate is now 
accessible by the micro-optics the normal direction is partly obstructed by the base used to compensate 
for shrinkage effects (see Fig. 1a). To rule out that this base leads to the observed smoothing of spectral 
feature at shorter wavelengths we perform a second DLW step. After immersing the structure in resist 
(IP-L 780, Nanoscribe GmbH) we convert the base into a solid polymer block by writing through the 
substrate with an air objective (NA =  0.5). As can be seen in Fig.  1b this second DLW step does not 
impair the structural quality. Figure 2h reveals that overall transmittance level is increased considerably 
after filling of the base, yet no sharper spectral features appear. Hence, the smoothed transmittance curve 
below 2 μ m also results from the anisotropy of the structure.

Next, we compare the transmittance parallel to the substrate of a Fibonacci, Thue-Morse and 
Rudin-Shapiro structure (Fig.  2e–f). Again, the differences are most prominent between the transmit-
tance of the Fibonacci and the Rudin-Shapiro structure. Concerning the absolute transmittance levels the 
former reaches 80% while the latter hardly exceeds 30%. In correspondence with the results in reflection 
and its absolutely-continuous lattice spectrum, the Rudin-Shapiro structure has only minor variations in 
the considered spectral range disregarding the gradually increasing transmittance to longer wavelengths. 
In contrast, we observe the fingerprints of a pure-point lattice spectrum in the transmittance of the 
Fibonacci structure. Several pseudo stop bands are visible and particularly around λ =  1.5 μ m we find 
remarkably sharp features with transmittance variations of more than a factor of 2 within 15 nm small 
intervals. Finally, the transmittance of a Thue-Morse structure can be described as more fluctuating than 
Rudin-Shapiro but still smoother than Fibonacci in term of peak-to-valley modulation depth. Thus, this 
behavior nicely agrees with the results obtained in reflection.

Adding the reflectance and transmittance of Fig. 2 leads to a value that is far from unity. This can be 
partly attributed to finite numerical aperture of the collection optics. However, most of the missing light 
is lost to the sides of the structure due to scattering events. The mean distance a photon travels before 
being scattered out of the structure is determined from thickness dependent transmittance measure-
ments. Once coupled into the structure the scattering loss during propagation at λ  =  1.7 μ m is smallest 
for Fibonacci with a mean free path of lFI =  236 μ m followed by Thue-Morse, random and Rudin-Shapiro 
(lTM =  103 μ m, lRand =  73 μ m and lRS =  67 μ m, see Supplementary Fig. S1). In order to elucidate the propa-
gation inside the DA structures we spatially resolve the transmitted light by imaging the exit facet onto a 
focal plane array (FPA) attached to the FTIR. For excitation we use light from a tungsten halogen lamp 
which is focused to a circular spot of 16 μ m diameter and centered on the input facet of the structure. 
In a first experiment, we study the influence of the modulation strength given by the ratio of the two 
length elements. To this end, we fabricate a set of Rudin-Shapiro structures of equal size but varying ratio 

Figure 2.  Reflectance spectra. (a–d) Fibonacci (a), Thue-Morse (b), Rudin-Shapiro (c) and a random (d) 
tiling with height h ≃  72 μ m (about 60 elements along the directions parallel and 80 elements perpendicular 
to the substrate). Transmittance spectra. (e–h) Parallel (thick) and perpendicular (faint) to the substrate 
of a Fibonacci structure (e). Parallel to the substrate for a Thue-Morse (f) and Rudin-Shapiro structure 
(g). Perpendicular to the substrate before (faint) and after (thick) filling of the base (h). The transmittance 
spectra are restricted to the non-absorptive region of the polymer.
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lB/lA. For lA =  lB =  1.1 μ m, hence for zero modulation strength, we obtain a simple cubic photonic crys-
tal having only marginal influence on the transmitted light distribution (Fig. 3b). And indeed, remov-
ing the structure from the light path, we observe the same four-fold symmetric distribution which is 
slightly broadened due to the lower refractive index of air (Fig. 3a). Increasing the modulation strength 
to ± 10% (lA =  0.99 μ m, lB =  1.21 μ m) results in a pattern covering substantial parts of the sample surface 
(Fig. 3c). In contrast, for the canonical ratio (lA =  0.84 μ m, lB =  lA · τ  ≃  1.359 μ m corresponding ± 23.65% 
modulation) the transmitted light is primarily confined to the point of excitation. Interestingly, the peak 
transmission in the center of the structure is the highest for the strongest modulation which indicates 
that the modes become more localized with increasing modulation.

In a next step, we investigate the observed mode localization by measuring the effective width of the 
transmitted beam at different propagation distances for fixed modulation lB/lA =  τ. As we cannot extract 
the light propagation within a single structure we fabricate a set of structures with increasing thickness 
from 13 μ m up to 170 μ m. After recording the light distribution I(x, y) for the same excitation conditions 
as before we calculate the inverse participation P I x y x y I x y x yd d d d2 2

∫ ∫=  ( , )

/

 ( , )


  to finally extract 

an effective width ωeff =  P−1/2. Figure  4a shows the obtained width vs. propagation distances z on a 
double-logarithmic scale. Below a structure height of about 50 μ m no differences between the lattice 
types can be discerned. Above this height, however, we find noticeably different trends. While the effec-
tive width for Rudin-Shapiro structures levels at around ωeff =  33 μ m we find monotonically increasing 
values for Fibonacci structures. From linear fits in Fig.  5a we can derive the exponent of a power-law 
relation ωeff =  zv in order to quantitatively compare the different lattice types. The smallest exponent is 
found for the Rudin-Shapiro structure, followed by the structures containing random and Thue-Morse 
correlations(vRS =  0.01 ±  0.032 <  vRand =  0.06 ±  0.016 <  vTM =  0.12 ±  0.028. The error interval equals one 
standard deviation). The largest exponent is obtained for the structure based on the Fibonacci sequence 
(vFI =  0.28 ±  0.021). These findings might illustrate the consequences of different eigenmodes associated 
with each lattice type. The light distribution found in absolutely-continuous structures is confined to the 
smallest area indicating exponentially localized eigenmodes17. As can be seen from the derived exponents 
Rudin-Shapiro could be advantageous over random correlations when localized modes are needed, e.g., 
for random lasers. At this point we would like to emphasize that the localization we refer to takes place 
in the plane perpendicular to the propagation direction. In time-resolved transmission experiments we 
do not observe any largely enhanced photon dwell times inside the structures, even at shorter wave-
lengths (see Supplementary Fig. S2).

Numerical section.  The intricate sample fabrication via DLW inevitably leads to some deviations 
from the ideal structure due to polymer shrinkage or residual surface roughness. To separate these 
extrinsic effects from the properties of an ideal sample and to eliminate some experimental limitations 
we perform three-dimensional numerical simulations using a commercial finite-difference time-domain 
package (Lumerical Solutions, Inc.). Due to limited memory (64 Gb) large-sized structures can be cal-
culated only for a narrow spectral range and a reduced footprint. That is why we concentrate on qual-
itatively reproducing the results found for the effective widths at a single wavelength. To account for 
the incoherent excitation in the experiment we run a number of individual simulations using the point 
spread function (PSF) of a Cassegrain objective as the source (NA =  0.5, excitation angles 15°–30°). From 
run to run the polarization and position of the PSF is varied randomly within a circular area of 5 μ m 
diameter. Inside the structure monitors record the field distributions at several positions along the prop-
agation direction for a fixed wavelength. The recorded fields are projected to the far-field in the forward 
direction followed by the removal of all components lying outside of the acceptance cone of the objective 

Figure 3.  Measured transmission patterns for different modulation strengths. (a) Pattern obtained when 
no sample is present. The Cassegrain objectives are positioned such that the excitation (collection) focus is 
placed at the bottom (top) of the structures when introduced into the light path. (b) Periodic structure with 
equal elements. (c,d) Weakly modulated (± 10%) (c) and full 1/τ  (± 23.65%) modulated (d) Rudin-Shapiro 
structure. Structure height is 60 μ m. Patterns are shown at a wavelength of λ  =  1.7 μ m.
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used to collect the light in transmission (same Cassegrain objective as for excitation). After reversing the 
far-field projection the incoherent sum of all simulation runs is calculated. Due to this procedure the 
resulting field distributions are directly comparable to the experimental results.

To demonstrate the validity of this approach we numerically calculate the behavior found for increas-
ing modulation strength in a Rudin-Shapiro structure. And indeed, for zero modulation, we obtain a 
four-fold symmetric pattern similar to the experimental result (see Fig. 5a for z  =  32 μ m and Fig. 3b for 
comparison). For longer propagation (z >  30 μ m) the light starts to interact with the lateral boundaries of 
the structure. The effect of increasing modulation strength is also found to be in good agreement with the 
experiment. While a modulation of ± 10% leads to a light distribution which is spread across the whole 
plane, simulations for the canonical modulation (± 23.65%) yield a mode pattern which is localized at the 
point of excitation (Fig. 5b,c and 3c,d for comparison). By changing the simulation to normal Gaussian 
PSF for excitation and collection we exclude the peculiar transfer function of the Cassegrain objectives 
to have any effect on the observed behavior.

For the comparison of the effective beam width in different lattice types the memory capacity lim-
its the structures size to 33 ×  33 ×  130 μ m3 at 68 nm mesh resolution. Convergence tests show that the 
extracted effective widths are converged to within 1% at this resolution. The results from the simulations 
displayed in Fig.  4b qualitatively reproduce the trends found in the experiment. The broadening of the 
beam is fastest in Fibonacci, followed by Thue-Morse and random structures (vFI =  0.30 ±  0.036 >  vTM  
=  0.15 ±  0.044 >  vRand =  0.07 ±  0.056). The exponents v nicely match the experimental values. Again, the 
slowest broadening is found for the Rudin-Shapiro structure. However, the exponent from the fit is neg-
ative indicating that the pattern even reduces in size during propagation. This effect might arise from the 
continuing extinction of modes being in close contact with the boundaries. As the lateral footprint of the 
calculated structures has only about half the size of the experimental structures this loss mechanism is 
more significant in the numerical calculations leading to the observed deviations from the experiment.

To summarize, we successfully fabricated three-dimensional DA structure of all three possible spec-
tral lattice types and performed a study of the optical properties in the infrared spectral range. We have 
found characteristic fingerprints of the aperiodic lattices in both reflectance and transmittance spectra 
allowing a clear discrimination between the different lattice types. Furthermore, investigations of light 
transport inside DA structures revealed differences in the excited eigenmodes evolving differently with 
the propagation distance. Eigenmodes in Rudin-Shapiro structures are localized most strongly compared 
to other lattice types. These experimental findings were corroborated by numerical FDTD studies giving 

Figure 4.  Measured and calculated effective widths. (a) Measured effective width vs. height for Fibonacci 
(+ ), Thue-Morse (×), random (◊) and Rudin-Shapiro (o) structures at λ  =  1.7 μ m shown on a double-
logarithmic scale. Different trends can only be observed for thick structures (> 50 μ m). (b) Double-
logarithmic plot of calculated effective width vs. height for a Fibonacci (+ ), Thue-Morse (×), random (◊) 
and Rudin-Shapiro (o) structure at the same wavelength as in (a).



www.nature.com/scientificreports/

7Scientific Reports | 5:13129 | DOI: 10.1038/srep13129

qualitatively similar results. Choosing a certain lattice type to obtain predictable eigenmodes properties 
presents a viable tool to enhance the functionality of many photonic systems, e.g., in the context of ran-
dom lasing or light harvesting for energy purposes.

Methods
Samples are fabricated with a commercial direct laser writing system (Photonics Professional, Nanoscribe 
GmbH) at a speed of 200 μ m/s using a microscope lens of NA =  1.3 (100x) by Carl Zeiss. The negative-tone 
photoresist (IP-DIP by Nanoscribe GmbH, n =  1.52) is developed successively in PGMEA and isopro-
panol for 10 minutes each.

We measure infrared reflectance and transmittance spectra with a Fourier-transform spectrometer 
(Bruker Vertex 70v, middle-infrared globar source) combined with an infrared microscope (Bruker 
Hyperion 3000, 36x Cassegrain objective, liquid-N2-cooled MCT detector) using a circular light spot of 
16 μ m diameter at a resolution of Δ ν  =  8 cm−1 wavenumbers. We tilt the sample and cover 3 quadrants 
of the objective to obtain a normal incidence geometry with a half opening angle of 7.5°. The reflectance 
spectra are normalized to a gold mirror. For measurements using the liquid-N2-cooled FPA detector 
(64 ×  64 pixels) we employ a 36x Cassegrain objective (NA =  0.5, opening angles between 15°–30°) and 
a near-infrared halogen lamp. The pixel resolution of 1.1 μ m leads to diffraction-limited intensity maps 
over the full spectral range. For a clearer visual representation the maps are resized by a factor of 4 using 
the MATLAB function imresize with bicubic interpolation. Spatially resolved transmittance spectra are 
collected at a resolution of Δ ν  =  16 cm−1 with 1024 scans and are normalized to the glass substrate.
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