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. A periodic jet of carbon dioxide (CO,) aerosols is a very quick and effective mechanical technique to
remove biofilms from various substrate surfaces. However, the impact of the aerosols on the viability
of bacteria during treatment has never been evaluated. In this study, the effects of high-speed CO,
aerosols, a mixture of solid and gaseous CO,, on bacteria viability was studied. It was found that
when CO, aerosols were used to disperse biofilms of Escherichia coli, they led to a significant loss
of viability, with approximately 50% of the dispersed bacteria killed in the process. By comparison,
75.6% of the biofilm-associated bacteria were viable when gently dispersed using Proteinase K and
DNase I. Indirect proof that the aerosols are damaging the bacteria was found using a recombinant
E. coli expressing the cyan fluorescent protein, as nearly half of the fluorescence was found in the
supernatant after CO, aerosol treatment, while the rest was associated with the bacterial pellet. In
comparison, the supernatant fluorescence was only 9% when the enzymes were used to disperse the
biofilm. As such, these CO, aerosols not only remove biofilm-associated bacteria effectively but also
significantly impact their viability by disrupting membrane integrity.

Biofilms are complex bacterial community structures attached to a surface and connected via extracel-
lular polymeric substances (EPS), a matrix composed mainly of polysaccharides, proteins, and DNA,
which encapsulates the bacteria'% Biofilms exist on a wide variety of surfaces, including leaf surfaces,
living tissues, implanted medical devices, membranes, ship hulls, and heat exchangers®*-8. They not only
cause economic losses’, but also present a public health hazard. In fact, based upon the U.S. Centers for
Disease Control and Prevention (Atlanta, GA, USA), biofilms are associated with 65% of bacteria-borne
infections and diseases in humans®. Part of the reason for this is that the bacteria present within biofilms
are much more resistant to antibiotics, disinfectants® and the host immune system effectors™.

From a commercial perspective, biofilms are one of the leading causes of technical failure in many
industrial systems, such as cooling towers, heat exchangers and pipelines in the oil industry’. They cause
biofouling and reduce membrane life times in water and waste water treatment plants'' via deteriora-
tion and corrosion of pipes and metal surfaces. Therefore, the control or removal of biofilms is critical
within a wide variety of fields and applications, with many studies being conduced?’. For example, anti-
microbials or biocides have been incorporated into, or coated onto, the surface of materials®. Biocides
or disinfectants, such as chlorine, ozone, hydrogen peroxide, and peracetic acid, have also been used to
inactivate biofilms and their bacteria'2. However, disinfectants generally do not completely penetrate the
biofilm matrix and, thus, may still permit physically intact biofilms even with treatment'2

Therefore, physical or mechanical methods are often required to remove biofilms from a surface.
These methods include electric currents'?, laser irradiation'4, ultrasonic vibration's, liquid micro-jets'
and high-pressure water sprays'’. Some limitations exist for these, however. Electrical fields and laser
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irradiation are limited to relatively small areas’, and micro-jets based on drag forces are not effective at
removing micrometer-sized particles's. High-pressure water sprays can effectively remove biofilms due
to their high momentum, but the underlying substrate can be damaged by this momentum if it is not
sufficiently durable.

Recently, our group presented a novel CO, aerosol technique to remove Escherichia coli biofilms'’.
This technique employed periodic jets of carbon dioxide aerosols, a mixture of solid and gaseous CO,,
which were generated by the adiabatic expansion of high-pressure CO, gas through a nozzle. We demon-
strated that this CO, aerosol technique was very effective at removing biofilms from several surface
materials with removal efficiencies ranging from 93.2% to 99.9% when treatment times of 40-90s were
employed?. Furthermore, the removal efficiencies measured from independent samples showed very
small variations (generally less than 5%) when using the optimized conditions.

This CO, aerosol technique is similar to high-pressure water sprays in that biofilms are removed pri-
marily by mechanical impact or momentum transfer, but the momentum that is delivered to the surface
is much smaller in the CO, aerosol technique and, hence, a negligible amount of damage to the surface
occurs. On the other hand, the momentum of the high-speed solid CO, particles within the aerosols may
not be negligible for the bacteria present within the biofilm considering that the generated solid CO,
diameter ranges from 0.4 to 9.6pum with the peak of 0.7um?' and, therefore, may affect their viability.
This is a particularly critical characteristic that needs to be evaluated if this technique is to be widely
applied as the dispersal of bacteria into the air can be a significant environmental and health concern,
especially if they are pathogenic.

In this study, consequently, we investigated the effects of the CO, aerosol treatment on the viability
of E. coli XL1-Blue biofilms. This bacterium was selected since it is non-pathogenic and has been used
extensively in biofilm studies by many groups?-?*. Using multiple analytical tools, including confocal
microscopy and scanning electron microscopy (SEM) to visualize the biofilms before and after the treat-
ment and flow cytometry combined with colony forming units (CFU) measurements to assess the bac-
terial viability, we show that these carbon dioxide aerosols are not only effective at removing bacterial
biofilms but they also significantly reduce their viability.

Results and Discussion

SEM analysis was initially used to analyze E. coli biofilms grown for one day on silicon chips before and
after treating them with CO, aerosols or hydrolytic enzymes (Fig. 1). This figure shows that a uniform
growth of E. coli biofilm across the silicon surface was readily apparent for the control chip (Fig. 1a) and
that this biofilm was effectively removed after the CO, aerosol treatment (Fig. 1b). For comparison, an
SEM micrograph of the E. coli biofilm after soaking in HEPES buffer is also presented (Fig. 1c) along
with an image showing the E. coli biofilm after treatment with both Proteinase K and DNase I (Fig. 1d).
As these two enzymes hydrolyze the protein and DNA present within the EPS, treatment of the biofilms
with both of these results in a gentle dispersion of the bacteria.

To analyze these results deeper, particularly with regards to biofilm viability, we stained the biofilms
with a BacLight stain (Invitrogen, USA) containing both SYTO9 and propidium iodide (PI), which labels
the live cells green and the dead cells red, respectively. Figure 2a shows the fluorescent image of the
untreated E. coli biofilm. Although not quantitative, the greater prevalence of green fluorescence suggests
that the majority of the culture was viable, a finding that also appears true of the HEPES-treated biofilm
(Fig. 2b). Treatment of the biofilm with either hydrolytic enzymes (Fig. 2c) or the aerosols (Fig. 2d),
however, led to a significant decrease in both fluorescent signals, affirming the findings of Fig. 1 where a
significant number of the bacteria cells were removed by both of these treatments.

Removal of biofilms with CO, aerosols was previously demonstrated by our group'®?. Based upon the
above images and a previous report?, it is clear that biofilms harbor a significant number of viable bacte-
ria. However, the effects of CO, aerosols on the viability of the dispersed bacteria have not been studied
to date. To evaluate this, therefore, we collected three groups of samples: enzymatically dispersed bacteria
from a biofilm using Proteinase K and DNase I (Control), the bacteria dispersed from the biofilm by CO,
aerosols (Aerosol) and those obtained after treatment of the biofilm first by CO, aerosols followed by an
enzymatic treatment of the biofilm still attached to the silicon chip (Aero+ Chip). It should be noted
that all the samples collected were treated subsequently with Proteinase K and DNase I to dissociate any
bacterial aggregates that were present to ensure that the viable counts in Fig. 3a were correct.

For the control sample, which was dispersed using only the enzymes, the total number of viable
bacteria per chip was on average 9.8 x 10’ CFU. By comparison, the number of viable bacteria in the
aerosol-dispersed samples was 3.2 x 107 CFU, or approximately 3-fold less. Inclusion of the bacteria still
present on the chip after aerosol treatment increased the viable count to 4.9 x 107 CFU, which is approx-
imately half the original number. Based upon the number still attached to the chip, i.e., 1.7 x 107 CFU,
treatment of the biofilms with aerosols removed approximately 80% of the biofilm-associated viable cells
from the silicon chip surface. This value is not unexpected as the treatment area did not encompass the
entire chip.

As the solid CO, particles are comparable in size with the bacteria, it was presumed that their momen-
tum and impact may be sufficient to cause damage to the bacteria and their membranes. To study this
more in depth, we performed the same experiments with a fluorescent strain of E. coli that expresses
the cyan fluorescent protein (CFP). It was hypothesized that if the cell membranes are damaged by the
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Figure 1. SEM images showing the effects of a treatment with either CO, aerosols or hydrolytic enzymes
on the E. coli biofilms grown for one day. (a) Untreated control chip showing the presence of an extensive
E. coli biofilm on the Si surface. (b) Biofilm after CO, aerosol treatment. (c) Image of E. coli biofilm after
being soaked in 25 mM HEPES buffer for two hours. (d) E. coli biofilm after treatment with HEPES buffer
containing both Proteinase K and DNase 1.

CO, aerosols, the CFP protein would be released into the collection media, thereby increasing the flu-
orescence of the cell-free supernatant. This was found to be the case, as shown in Fig. 3b. Addition of
Proteinase K to the sample was not a concern since GFP and related fluorescent proteins are known to
be resistant to this protease®.

When considering the total fluorescence of each sample as shown in Fig. 3b, approximately half is lost
during the aerosol treatments. Of that seen in the captured samples, however, approximately half was
associated with cell pellet and the other half was found in the supernatant. Such a significant presence of
CFP within the extracellular milieu indirectly confirms that the CO, aerosols are disrupting the bacterial
membrane integrity and helps explain the loss in viability seen in Fig. 3a. This activity of the CO, aerosols
can be attributed to the large momentum (mechanical impact) of the solid CO, particles and high shear
near the silicon surfaces due to the high-speed gas flows, which will be discussed below.

Although the above fluorescence results indicate that a large number of the bacteria are being injured
or killed by the aerosol treatment, it still remained uncertain if the decrease in the viable counts (Fig. 3a)
is due to cell death or if a portion of the bacterial population was lost due to aerosolization of the bio-
film. To address this, we analyzed each of the collections (Control, Aerosol and Aero+ Chip) using flow
cytometry. As shown in Fig. 4a, when the same volume of sample was analyzed the particle number in
the Aerosol sample was approximately 40% lower than that of the Control. However, treatment of the
undispersed biofilm still present on the chip with Proteinase K and DNase I (Aero + Chip) increased this
to 73%. These values show that a significant number of bacteria are not being captured, and although this
contributes to the lower viability seen in Fig. 3a it does not fully account for this discrepancy.

Flow cytometry combined with Live/Dead staining is also commonly employed to evaluate bacterial
viability for the samples derived from various environmental conditions, such as soil and water sam-
ples?’. Consequently, using live and dead fractions of planktonic bacteria, we were able to gate the live
and dead populations according to the FACS analyses (Fig. S1). Subsequently, using a sample number
of 5,000 cells for each test condition, we were able to determine the relative live and dead populations
(Fig. S2). Interestingly, there were populations that fell between these two categories and, thus, these were
serendipitously branded as “injured” bacteria (Fig. 4 and S2).
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Figure 2. Confocal microscopic image of one-day grown E. coli biofilms stained with the BacLight stain
(SYTO-9 and propidium iodide) after their respective treatments. (a) Untreated control biofilm.

(b) HEPES soaked biofilm. (¢) E. coli biofilm after treatment with Proteinase K and DNase 1. (d) E. coli
biofilm treated with CO, aerosols. The scale bars are 50 pm.

Figure 4b shows that the majority of the bacteria present within the Control samples are living (76%).
This is in stark contrast with the Aerosol and Aero+ Chip samples, both of which harbor a significant
number of dead and injured bacterial cells. These results, however, are in agreement with the results
presented in Fig. 3b since 54% and 47% of the Aerosol and Aero+ Chip populations, respectively, are
classified as non-viable, i.e., dead. By comparison, in Fig. 3b the supernatant fluorescence intensities for
both samples were just below that found in the pellets. The results from both tests indicate that approx-
imately half of the dispersed bacterial population is killed by the aerosols.

From Fig. 3a, the Aerosol sample viability was 33% while for the Aero+ Chip sample it was 51%.
When the relative number of particles in Fig. 4a, which represents the capture efficiency, is multiplied by
the summed percent of live and injured bacteria (Fig. 4b) for each sample, we obtain a relative viability
of 30% and 44% for the Aerosol and Aero+ Chip samples, respectively, which is slightly lower than but
similar to the colony forming units actually found (Fig. 3a). As such, the consistency between the dif-
ferent techniques employed in this study helps to substantiate that the CO, aerosols inflict a significant
amount of damage to the biofilm-associated bacterial population during treatment and that this leads to
losing the viability. Moreover, it suggests that the “injured” bacteria are viable and capable of producing
colonies.

The aerosols actually consist of two components — the solid CO, particles and gaseous CO,. As
mentioned above, the loss in viability is likely attributed to the large momentum associated with the
high-speed solid CO, particles. To study this further, and in the hope of identifying the component
responsible, we also performed tests with only pressurized nitrogen gas whose stagnation pressure was
the same as that of CO, gas. This is based on the fact that CO, and N, gases would have almost the
same flow patterns and shear stresses on the substrate surfaces if both gases have the same pressures.
As shown in Fig. 4c, the viability of the bacteria decreased when the biofilm was treated with nitrogen
alone implying viability loss due to the gas component of the aerosols. This loss was more significant
when CO, aerosols were used. A comparison between these two treatments shows that the viability was
significantly lowered by the presence of the CO, aerosols, that is, the solid CO, particles and gaseous
CO,. As such, the activity of the CO, aerosols on bacterial viability can be attributed to both the large
momentum (mechanical impact) of the solid CO, particles and the high shear stress resulting from the
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Figure 3. Viable number of E. coli present within the CO, aerosol treated samples. (a) Colony forming
units determined by plating out on agar plates. The samples are the Control, which was gently dispersed
using a Proteinase K and DNase I treatment, the Aerosol sample, i.e. the bacteria dispersed by CO, aerosols
and captured within the flask, and the Aero+ Chip sample, which includes both the flask captured bacteria
and the dispersal of any remaining bacteria present on the chip using Proteinase K and DNase I. (b) The
relative fluorescence seen in the whole sample or the constituent parts (i.e., cell pellet or supernatant). The
presence of nearly half of the fluorescence in the supernatant after CO, aerosol treatment implies that a
significant number of E. coli are being ruptured by this treatment. Statistical analysis was performed using
one-way ANOVA followed by the Tukey post hoc test. Statistically significant results are identified with
asterisks (*,** =P values < 0.05 or 0.01, respectively; ns — not significant).

CO, gas flows. It should also be noted that, although a high-pressure gas treatment only damages many
of the bacteria, the removal efficiency was shown previously to be very small®.

Although our group previously found that CO, aerosols can be used to remove biofilms from various
substrate surfaces, this study is the first to show that they also kill a significant portion of the bacteria
during the dispersal. Using several different analytical tools and techniques, we found the aerosols sig-
nificantly impact the biofilm population viability. An analysis of the supernatant fluorescence strongly
suggested that the aerosol-treated bacteria experience a loss in membrane integrity, i.e., rupturing, that
results in intracellular proteins being released into the surrounding milieu. The net result of this is a
dramatic loss in viability, as demonstrated here by the CFU enumeration and flow cytometry analyses,
with nearly 50% of the aerosol dispersed E. coli dying as a direct result of this treatment.

Methods

Bacterial growth. E. coli XL1-Blue was obtained from RBC Biosciences, Korea (HIT-Blue Competent
Cells, Cat# RH117). This strain was initially grown up on Luria-Bertani (LB) (BD Difco, USA) agar
plates (1.6% agar, BD Difco, USA) from which colonies were inoculated into 3ml LB broth in a 15ml
conical tube (SPL, Korea). These cultures were cultivated at 37 °C with shaking at 250 rpm for 16 hours.
Consequently, 25% glycerol stocks were prepared and these were stored at —80°C. Before preparation
of the biofilm, the glycerol stock was streaked on an LB agar plate and incubated overnight at 37°C to
cultivate colonies. From the plate, a single colony was inoculated into 10ml sterile LB broth in a 50 ml
conical tube containing 100 pg/ml ampicillin and incubated with shaking (250 rpm) at 37°C overnight.
To generate a fluorescent variant of XL1-Blue, this strain was transformed with the pAMCyan plasmid
(Clontech, USA), which confers resistance to ampicillin.

E. coli biofilm formation on silicon chips. Initially, silicon chips (10 x 10mm, Shin-Etsu, Japan)
were cleaned by piranha solution (hydrogen peroxide (30%):sulfuric acid (96%) =1:1v/v) for 10 minutes,
rinsed with deionized water for 10 minutes, and then dried under pure nitrogen gas. The contact angles
of a distilled water droplet on the chips and surface roughness of the chips were 17.0 £ 1.5 degrees and
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Figure 4. Analysis of the bacteria dispersed during the CO, aerosol and enzymatic treatments by flow
cytometry. The samples are the same as in Fig. 3. (a) Actual number of particles counted within the FSC
gated region when using a fixed time of 10seconds for each sample. (b) Relative populations of the cells
(live, dead and injured) in each sample. (c) Relative populations of the cells (live, dead and injured) were
dispersed by enzymatic treatment (control), N, gas, and CO, aerosol treatments. In these N, gas and CO,
aerosol treatments, the dispersed bacteria were added to the bacteria present on the chip surfaces. The
classification of bacterial cells into each population was performed by staining the samples with the BacLight
stain (SYTO9 and propidium iodide) prior to FACS analysis. A total of 5,000 cells were analyzed for each
sample, and the results show the average from three independent tests. Statistical analysis was performed
using one-way ANOVA followed by the Tukey post hoc test. Statistically significant results are identified
with asterisks (¥, **, or *** =P values < 0.05, 0.01 or 0.0001, respectively; ns - not significant).

22.6 4 0.8 nm, respectively®. As such, this silicon surface is very smooth, which generally facilitates the
initial attachment of bacteria?®. Moreover, this aerosol technique was quite insensitive to the substrate
materials employed with regard to the biofilm removal efficiencies®. Before preparation of the biofilm,
the silicon chips were treated with 70% ethanol for 5seconds, rinsed in autoclaved deionized water for
5seconds, and then finally rinsed three times in LB broth for 5seconds each.

To grow the biofilms, an overnight grown culture of E. coli XL1-blue (ODg(2.1) was initially diluted
100-fold into fresh LB media, and 180l of this diluted culture was further diluted into 5ml of fresh LB
media. This culture contained an average of 240000 (£39600) viable cells per ml and was poured into
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Figure 5. Schematic illustration of the system used in this study to expose bacterial biofilms to CO,
aerosols and capture dispersed cells®.

a 35mm Petri dish. Two chips were aseptically placed into each dish and incubated for 24h at 30°C
without shaking.

Biofilm removal via CO, aerosol treatment. The general experimental procedures employed were
published previously'*?°. Briefly, the biofilms on the silicon chips were washed gently with 10 mM ammo-
nium acetate buffer (Sigma-Aldrich, USA), and were treated with the aerosols immediately. We placed
the E. coli biofilm grown chips horizontally and positioned 2cm from the nozzle in an aerosol flow.
The nozzle axis was maintained at 40° angle relative to the chip surface. The bacteria dispersed by the
aerosol treatment were collected using a 200 ml bottle arranged over the chip to minimize loss (Fig. 5).
A dual gas unit (K6-10DG; Applied Surface Technologies, NJ, USA) was used for aerosol generation.
The N, gas pressure was 0.7 MPa and the CO, gas pressure was 5.6 = 0.2 MPa. The CO, aerosols were off
for 3seconds during each 8-second cleaning cycle, and the total cleaning time was 5 cycles. The average
room temperature was 25.2 (£2.1)°C, and the average relative humidity was 67.5 (£7.3) % during all
aerosol treatments.

Enzymatic disruption of the biofilms. The bacteria collected in 25mM HEPES buffer (pH 7.2)
(Sigma-Aldrich, USA) were subjected to enzymatic treatment with Proteinase K (100 ng/ml, Invitrogen,
USA) and DNase I (100 ng/ml, Sigma-Aldrich, USA) for 2h at 37°C to disrupt any cell clumps that may
be present. Likewise, biofilms still present on the treated chips and those on control chips, i.e., untreated,
were also dispersed using the same enzymatic treatment.

Confocal and scanning electron microscopic analysis. Confocal microscopy and SEM were
used to visualize the E. coli XL1-Blue biofilms that formed on the silicon chips. The bacterial cells were
stained by immersing the chip for 30 min in 25mM HEPES buffer containing BacLight stain (SYTO9-PI,
Invitrogen, USA). The chips were then washed gently to remove any excess dye before imaging using an
LSM700 confocal microscope (Carl Zeiss) operated by ZEN 2009 software.

Before SEM imaging, the bacteria were fixed by the chemical fixation procedure described by Dwidar
et al.?. The samples were then placed in a critical point dryer (SPI Supplies) for the drying at 35°C at
1200 psi. Finally, the samples were coated with platinum and imaged with a scanning electron micro-
scope (S-4800, Hitachi).

Enumeration of viable bacteria. For viability measurements, we determined the CFU of three sam-
ples separately: 1) from untreated chips using an enzymatic treatment (Control); 2) the bacteria dispersed
by the aerosols (Aerosol); and 3) the bacteria dispersed by the aerosols and then an enzymatic treatment
of the same chip to obtain any biofilm-associated bacteria still attached to the chip (Aero+ Chip). After
aerosol treatment, the bacterial samples were collected with 10ml of buffer as mentioned above and
transferred to a 15ml conical bottom tube (BD Falcon, USA). For the Aero+ Chip samples, the treated
chip was added to the collected sample in the same tube to disperse the biofilm attached to the surface
using Proteinase K and DNase I as described above. The same protocol was used for the Control, so
each of the different samples was present within 10ml of HEPES buffer (25mM). The samples were
centrifuged at 16,000g for 5minutes and the supernatant was used for fluorescence determination. The
resulting bacterial pellet was re-suspended in 9.8 ml HEPES buffer, and the number of viable bacteria
within each sample was determined by spreading serial dilutions out on LB agar plates and growth of
the colonies overnight at 37°C.

Fluorescence measurements. From the 10ml samples obtained above, a small aliquot was taken
for fluorescence measurement. The total fluorescence was determined using 200 ul of the collected sam-
ples. In parallel, a 200pl cell-free supernatant sample was also tested to determine the extracellular
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fluorescence. These samples were prepared by centrifuging the samples as described above and filtering
them through sterile 0.22 micron syringe filters to remove any remaining bacterial cells. Likewise, the
resulting cell pellet was re-suspended in the same volume of HEPES buffer (25mM) and the fluorescence
of this sample (pellet) was also determined, representing the cell-associated fluorescence. The fluores-
cence measurement in each case was performed using a 200l sample with 96 well black plates (SPL,
South Korea) and a fluorescence plate reader (Infinite® 200 PRO - Tecan, Germany). The excitation and
emission wavelengths were set to 410nm and 495 nm, respectively. The fluorescence from each of the
samples was normalized using a standard curve and is shown relative to the whole sample fluorescence
obtained from the Control.

Flow cytometry analysis of dispersed bacteria. Each sample was run for 10seconds using a FACS
calibur flow cytometer (BD Biosciences, San Jose, CA), and the number of E. coli cells, both viable and
dead, passing through the FSC/SSC gated region were counted. For live/dead discrimination, dead bac-
teria were prepared by adding 50l of disinfectant Extran MA 02 (Merck KGaA, Germany) to 450l of
an overnight bacterial culture and incubating for 30 min at room temperature. Live cells were directly
taken from overnight grown suspension. Both samples were stained with BacLight stain (SYTO9 and PI)
prior to FACS analysis. The stain exhibits green fluorescence in all bacterial cells, while PI only stains
dead bacteria with a red fluorescence. The different population were gated and gate settings were used
for analysis of dispersed bacteria from biofilm.

Similarly, the dispersed biofilm samples were stained and underwent FACS analysis as mentioned
above. All the samples were kept at room temperature for 10 minutes before the flow cytometry analysis.
Experiments were performed in a BD LSRFortessa Flow Cytometer (BD Biosciences, San Jose, CA) using
a blue (488nm) laser to excite the stained cells. The green fluorescence emission was detected with a
530/30 band pass filter and the red fluorescence emission was detected with a 695/40 band pass filter.
The fluorescence emission was acquired for 5,000 cells and displayed in an exponential scale using BD
FACS Diva v.6.2 (BD Biosciences San Jose, CA).

Data analysis. Each of the experiments was performed independently in triplicate for error analysis.
The average values obtained are shown in the figures with the standard deviations presented as the error
bars. Statistical analyses comparing the results amongst the different treatments were performed using a
one-way ANOVA test followed by the Tukey post hoc test. Significantly different results are designated
with asterisks (*) within the corresponding figures.
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