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Logical error rate in the Pauli 
twirling approximation
Amara Katabarwa & Michael R. Geller

The performance of error correction protocols are necessary for understanding the operation 
of potential quantum computers, but this requires physical error models that can be simulated 
efficiently with classical computers. The Gottesmann-Knill theorem guarantees a class of such error 
models. Of these, one of the simplest is the Pauli twirling approximation (PTA), which is obtained 
by twirling an arbitrary completely positive error channel over the Pauli basis, resulting in a Pauli 
channel. In this work, we test the PTA’s accuracy at predicting the logical error rate by simulating 
the 5-qubit code using a 9-qubit circuit with realistic decoherence and unitary gate errors. We find 
evidence for good agreement with exact simulation, with the PTA overestimating the logical error 
rate by a factor of 2 to 3. Our results suggest that the PTA is a reliable predictor of the logical error 
rate, at least for low-distance codes.

Feynman introduced the idea of a universal quantum simulator1, noting that a classical Turing machine 
would require a time exponential in the number of particles to simulate quantum phenomena, while his 
proposed simulator made from quantum components would avoid such a scaling. A surge of interest 
grew around the nascent field of quantum information theory when Shor discovered his now famous 
algorithm2, which can provably factor numbers in polynomial time, in contrast to a classical machine 
which is believed to scale exponentially with the number of bits of the input. However, it was clear from 
the very beginning that the great power of quantum computing—using quantum superpositions and 
entanglement—also presented the greatest challenge to its realization; namely, the incredible delicacy of 
quantum states in the presence of unwanted environmental interactions.

The first major step to protect the delicacy was taken by Shor when he proposed a quantum circuit 
that could correct for any single-qubit error by encoding a logical qubit into 9 physical qubits3. Shor’s 
9-qubit code and it’s generalizations work perfectly if we make the unphysical assumption that all syn-
drome measurements are error-free. It is therefore necessary to understand the effect of decoherence and 
unitary gate errors on a complete fault-tolerant circuit. Unfortunately, the direct approach to this prob-
lem, namely a full Hilbert space simulation of the quantum circuit in the presence of errors and noise, 
is impractical because of the exponential relationship between amount of memory and time needed 
to simulate quantum circuits and the number of qubits. A way around this problem is to rely on the 
Gottesmann-Knill theorem, which shows that any circuit in which we prepare initial states in the com-
putational basis, use only gates from the normalizer of the Pauli group (in this case the Clifford group), 
and measure operators from the Pauli group, can be efficiently simulated on a classical computer4. We 
are thus provided with a class of efficient error models that includes the Pauli and Clifford channels.

Simulation of a noisy quantum circuit is accomplished by performing each ideal operation followed 
by an error (a gate from Pauli or Clifford group) with some probability. It is then necessary to construct 
an error channel such that one approximates the true noise process as accurately as possible (with respect 
to some measure), and ideally with the additional property that the approximate channel upper-bounds 
the actual error. The first steps in this direction were taken by Magesan et al.5 and Gutiérrez et al.6. 
These investigations considered a single qubit density matrix and not a quantum error correcting circuit. 
Geller and Zhou7 took a different approach and asked how well the Pauli twirling approximation (PTA), 
obtained by twirling the exact error channel over the Pauli basis, performed on a 4-qubit Bell-state 
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preservation circuit, where an analog of the logical error rate can be defined. Despite its simplicity, the 
PTA was found to work surprising well over a large range of physical error rates, but did not always 
upper bound the exact error. A second test of the PTA was carried out by Tomita and Svore8, where 
the logical error rate was calculated for the distance-3 surface code. Although the PTA test was not the 
main focus of their work, these authors found excellent agreement for logical σz errors, but that the PTA 
overestimated the logical σx error by a factor of 5 to 10, depending on the qubit T1 time. The results of 
Tomita and Svore8, and the desire to extend the work of ref. 7 to a test of the PTA on an actual logical 
error rate calculation, motivated the work reported here. In addition, two other related investigations 
have recently appeared: Puzzuoli et al.9 discussed the construction of efficient (Pauli and Clifford) error 
channels obtained by minimizing the diamond norm subject to the constraint that the approximate chan-
nel always upper bounds the error (an honest representation in the terminology of refs 5,9) and tested 
their accuracy when applied to error-correcting circuits. Gutiérrez and Brown10 focused on Clifford 
channels and computed error thresholds for the Steane1,3,7 code. The results of refs 7,8,10, together with 
the results reported below, suggest that the PTA is a reliable (and honest) predictor of the logical error 
rate, at least for low-distance codes.

Methods and Results
Consider the time evolution of a density matrix ρ represented by some superoperator Λ ; then we have11

∑ρ ρ ρ→ Λ( ) = ,
( )

†E E
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where the Em are N ×  N Kraus matrices. Next consider a finite set of operations  = B{ }m  with m =  1, 
…, K. Twirling12–15 the channel to obtain a new channel Λ̃ is to perform the operation
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To arrive at the PTA, we simply consider the set  to be the n-qubit Pauli basis n, defined as con-
sisting of all possible tensor products

 = , , , , ( )⊗I X Y Z{ } 3n
n

giving a total of 4n distinct elements. Performing the PTA gives Λ̃ that is always diagonal in the Pauli 
basis, namely


∑ ρΛ = .

( )∈

˜ p B B
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If Λ  is trace-preserving then ∑ =p 1m m , otherwise ∑ <p 1m m . A detailed application of the PTA to 
single qubit decoherence models is carried out in ref. 7.

In this work we apply the PTA to the calculation of the logical error rate for the 5-qubit code. The 
5-qubit code is the smallest quantum error correcting code that can encode a logical qubit, and detect 
and correct a single one-qubit error. It is a distance 3 quantum error correcting circuit, meaning that 
with one error correcting cycle, 3 is the lowest number of single qubit errors that cannot be detected. 
This code can be implemented by measuring the stabilizers
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Note that by starting with the first stabilizer one can arrive at the other three by a cyclic permutation 
of the qubits. The logical 0  and logical 1  states for this code are
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A logical state is prepared in the computational basis using the first five (data) qubits, as shown 
in Fig.  1. The next four qubits are used as ancilla qubits to measure the four stabilizers after which 
four measurement outcomes (x1, x2, x3, x4) are obtained. There are 16 possible measurement outcomes 
which are in a one to one correspondence with the 16 possible errors that might occur [counting 
the outcome (0, 0, 0, 0) as a trivial error]. In Table 1 we list all possible measurement outcomes and 
the corresponding single qubit errors. We call the implementation of the circuit and performing the 
measurement step a cycle, which is shown in Fig.  1. If one goes through a cycle and a single error 
occurs on any of the first 5 qubits, this might be reflected in the measurement result and thus detected. 
But instead suppose that no errors occur on the data qubits but right before the measurement step a 
bit-flip error occurs on the first syndrome qubit, giving the measurement outcome of (1, 0, 0, 0). An 
incorrect interpretation of the result would be to conclude that one of the 16 possible errors on the 
data qubits has occurred, whereas in fact the fault lies with a syndrome qubit. We therefore require a 
protocol that is tolerant to a single syndrome-qubit (or readout) error. To this end, we note that for 
errors uncorrelated in time, it is likely that after readout and re-initialization that the syndrome qubit 
will return to its original “faithful” state at the end of the next cycle. The procedure followed in our 
simulations is therefore the following:

1.	 With the initial 9-qubit density matrix (representing data and syndrome qubits) perform the sta-
bilizer measurements and the measurement step to complete one cycle. Record the measurement 
outcome.

2.	 For the next cycle, re-initialize the syndrome qubits but use the 5-qubit density matrix from the 
end of the last cycle.

Figure 1.  Stabilizer measurement circuit for the 5-qubit code written in terms of CZ gates (vertical lines 
with dots). A cycle is moving through this circuit once and performing the measurement step.

measurement result single-qubit error

0000 I

0001 Z1

0010 X3

0011 Z0

0100 X0

0101 X2

0110 Z4

0111 Y0

1000 Z2

1001 X4

1010 X1

1011 Y1

1100 Z3

1101 Y2

1110 Y3

1111 Y4

Table 1.   Syndrome measurement outcomes and their corresponding predicted single-qubit errors.
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3.	 Repeat step 2 until the same measurement outcome is obtained three times in succession. Call this 
event the completion of a trial.

After observing the same measurement outcome for three cycles in a row, we calculate

ρ ρ= − ( ), ( )P 1 Tr 8c m

where ρc is the data-qubit density matrix obtained at the end of the final cycle and ρm is the data-qubit 
density matrix predicted by the stable measurement outcome. We then define the logical error rate as

∑= ,
( )

P
N

P1
9L

trials

where N is the number of trials. The value of N is chosen to make the sampling errors much smaller than 
the differences between the exact and PTA logical error rates we are interested in. Defining the logical 
error rate this way allows us to calculate an error rate that could be measured experimentally.

Our work here is done with surface code in mind where for example one deals with single syndrome 
qubits and the robustness of a syndrome measurement is achieved by comparing measurement results 
from a number of measurement cycles.

For the exact calculations of the average logical error rate PL, decoherence was included by using 
Kraus matrices for amplitude damping and pure dephasing as defined in ref. 7. The gates are assumed to 
act instantaneously and the non-unitary evolution is implemented using the operator sum representation 
between the action of the gates for a time of 25 ×  10−9 s. Unitary gate errors are introduced by using the 
non-ideal CZ gate7
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whereas the Hadamards are taken to be ideal. The form (10) reflects actual errors in a CZ gate imple-
mented with superconducting qubits (neglecting leakage)16. There are three parameters in (10) that can 
be changed, namely, E1, φ and δ. In the simulations, we choose φ =  0 and distribute the total intrinsic 
gate error E equally between E1 and δ. By intrinsic or unitary gate error we mean the gate error in the 
absence of decoherence. The PTA applied to (10) yields 16 two-qubit Pauli error operators with probabil-
ities given in ref. 7. To obtain standard errors on the order 10−3 or smaller, about 20 trials were required, 
which took several days of runtime to complete. The PTA calculations of PL were done using classical 
Monte Carlo, which introduces larger sampling errors. A total of 10000 trials were performed to get 
sampling errors down to around 10−3.

Figures  2,3 and 4 give the logical error rate PL versus intrinsic error for three values of T1, with 
T2 =  T1. We find in these cases that the PTA overestimates the logical error rate by about a factor of 2 
to 3. In Fig. 5, we fix the total intrinsic error to E =  10−3 and test the PTA for five different states on the 
logical Bloch sphere: the eigenstates of σz, σx, and the + 1 eigenstate of σy.

Figure 2.  Logical error rate for the |0〉L state with T1 = T2 100 μs. 
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Conclusions
We have studied the PTA logical error rate compared to an exact calculation that includes both decoher-
ence (amplitude damping and pure dephasing) and unitary gate errors. The tests reported here include 
20 different settings—physical error rates and/or initial logical states—with the PTA overestimating the 
logical error rate by a factor of 1.9 to 3.1, with a mean ratio of 2.35. In the language of Megasan et al.5, 
we find that the PTA is always honest (the ratio is > 1) for the parameter regimes considered. We find 

Figure 3.  Logical error rate for the |0〉L state with T1 = T2 70 μs. 

Figure 4.  Logical error rate for the |0〉L state with T1 = T2 40 μs. 

Figure 5.  Logical error rate for different states on the Bloch sphere with T1 = T2 70 μs. and 10−3 intrinsic 
error. 
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no significant difference between PTA’s performance for bit-flip and phase-flip errors, which would be 
reflected in Fig.  5, in contrast to the results of Tomita and Svore8. The explanation for the difference 
between the results is currently not known. There are a number of significant differences between the 
two arenas in which PTA’s performance is measured that could be the explanation: the fact that in surface 
code we have a two dimensional structure which allows for more interactions between the qubits,the 
fact that one is topological and the other is not, or it could be as simple as the work in ref. 8 studied a 
considerably larger system. This warrants future study. We also find that, as expected, the PTA is less 
accurate for unitary errors, in agreement with refs 7,8.
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