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Logical error rate in the Pauli
twirling approximation
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The performance of error correction protocols are necessary for understanding the operation
. of potential quantum computers, but this requires physical error models that can be simulated
Published: 30 September 2015 : efficiently with classical computers. The Gottesmann-Knill theorem guarantees a class of such error
. models. Of these, one of the simplest is the Pauli twirling approximation (PTA), which is obtained
by twirling an arbitrary completely positive error channel over the Pauli basis, resulting in a Pauli
channel. In this work, we test the PTA's accuracy at predicting the logical error rate by simulating
the 5-qubit code using a 9-qubit circuit with realistic decoherence and unitary gate errors. We find
evidence for good agreement with exact simulation, with the PTA overestimating the logical error
rate by a factor of 2 to 3. Our results suggest that the PTA is a reliable predictor of the logical error
rate, at least for low-distance codes.
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Feynman introduced the idea of a universal quantum simulator', noting that a classical Turing machine
would require a time exponential in the number of particles to simulate quantum phenomena, while his
proposed simulator made from quantum components would avoid such a scaling. A surge of interest
grew around the nascent field of quantum information theory when Shor discovered his now famous
algorithm?, which can provably factor numbers in polynomial time, in contrast to a classical machine
which is believed to scale exponentially with the number of bits of the input. However, it was clear from
the very beginning that the great power of quantum computing—using quantum superpositions and
entanglement—also presented the greatest challenge to its realization; namely, the incredible delicacy of
quantum states in the presence of unwanted environmental interactions.

The first major step to protect the delicacy was taken by Shor when he proposed a quantum circuit
that could correct for any single-qubit error by encoding a logical qubit into 9 physical qubits®. Shor’s
9-qubit code and it’s generalizations work perfectly if we make the unphysical assumption that all syn-
drome measurements are error-free. It is therefore necessary to understand the effect of decoherence and
unitary gate errors on a complete fault-tolerant circuit. Unfortunately, the direct approach to this prob-
lem, namely a full Hilbert space simulation of the quantum circuit in the presence of errors and noise,
is impractical because of the exponential relationship between amount of memory and time needed
to simulate quantum circuits and the number of qubits. A way around this problem is to rely on the
Gottesmann-Knill theorem, which shows that any circuit in which we prepare initial states in the com-
putational basis, use only gates from the normalizer of the Pauli group (in this case the Clifford group),
and measure operators from the Pauli group, can be efficiently simulated on a classical computer®. We
are thus provided with a class of efficient error models that includes the Pauli and Clifford channels.

Simulation of a noisy quantum circuit is accomplished by performing each ideal operation followed
by an error (a gate from Pauli or Clifford group) with some probability. It is then necessary to construct
an error channel such that one approximates the true noise process as accurately as possible (with respect
to some measure), and ideally with the additional property that the approximate channel upper-bounds
the actual error. The first steps in this direction were taken by Magesan et al.® and Gutiérrez et al.’.
These investigations considered a single qubit density matrix and not a quantum error correcting circuit.
Geller and Zhou’ took a different approach and asked how well the Pauli twirling approximation (PTA),
obtained by twirling the exact error channel over the Pauli basis, performed on a 4-qubit Bell-state
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preservation circuit, where an analog of the logical error rate can be defined. Despite its simplicity, the
PTA was found to work surprising well over a large range of physical error rates, but did not always
upper bound the exact error. A second test of the PTA was carried out by Tomita and Svore?, where
the logical error rate was calculated for the distance-3 surface code. Although the PTA test was not the
main focus of their work, these authors found excellent agreement for logical ¢ errors, but that the PTA
overestimated the logical o* error by a factor of 5 to 10, depending on the qubit T, time. The results of
Tomita and Svore?, and the desire to extend the work of ref. 7 to a test of the PTA on an actual logical
error rate calculation, motivated the work reported here. In addition, two other related investigations
have recently appeared: Puzzuoli et al.® discussed the construction of efficient (Pauli and Clifford) error
channels obtained by minimizing the diamond norm subject to the constraint that the approximate chan-
nel always upper bounds the error (an honest representation in the terminology of refs 5,9) and tested
their accuracy when applied to error-correcting circuits. Gutiérrez and Brown'® focused on Clifford
channels and computed error thresholds for the Steane'*” code. The results of refs 7,8,10, together with
the results reported below, suggest that the PTA is a reliable (and honest) predictor of the logical error
rate, at least for low-distance codes.

Methods and Results
Consider the time evolution of a density matrix p represented by some superoperator A; then we have!!

. _ ¥
p— Ap) ijEmpEma W

where the E,, are N x N Kraus matrices. Next consider a finite set of operations 5 = {B,,} with m=1,
..., K. Twirling'>"'5 the channel to obtain a new channel A is to perform the operation

T +
A= —=>» B,A(B,pB,)B,,.

To arrive at the PTA, we simply consider the set B to be the n-qubit Pauli basis 7,, defined as con-
sisting of all possible tensor products

P,=1{X,Y,2}*, (3)

giving a total of 4" distinct elements. Performing the PTA gives A that is always diagonal in the Pauli
basis, namely

A= 3" p, B,pB,.
B,EP, (4)

If A is trace-preserving then }° p = 1, otherwise 3° p < 1. A detailed application of the PTA to
single qubit decoherence models is carried out in ref. 7.

In this work we apply the PTA to the calculation of the logical error rate for the 5-qubit code. The
5-qubit code is the smallest quantum error correcting code that can encode a logical qubit, and detect
and correct a single one-qubit error. It is a distance 3 quantum error correcting circuit, meaning that
with one error correcting cycle, 3 is the lowest number of single qubit errors that cannot be detected.
This code can be implemented by measuring the stabilizers

X\2y23X 4 XoZ3Z X5, X\ X324 Zs, 2, X, X\ Zs. ()

Note that by starting with the first stabilizer one can arrive at the other three by a cyclic permutation
of the qubits. The logical |0) and logical |1) states for this code are

0,) = i(|00000) + [11000) + [01100) + [00110) + [00011) + |10001)

—[10100) — [01010) — [00101) — [10010) — [01001)
— |11110) — |01111) — [10111) — [11011) — |11101)) (6)

and

) = i(|11111) + [00111) + [10011) + [11001) + [11100) + [01110)

—[01011) — |10101) — [11010) — [01101) — |10110)
— [00001) — [10000) — [01000) — [00100) — [00010)). 7)
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Figure 1. Stabilizer measurement circuit for the 5-qubit code written in terms of CZ gates (vertical lines
with dots). A cycle is moving through this circuit once and performing the measurement step.

0000 I
0001 A
0010 X,
0011 Z,
0100 X,
0101 X,
0110 Z,
0111 Y,
1000 Z,
1001 X,
1010 X,
1011 Y,
1100 Z,
1101 Y,
1110 Y,
1111 Y,

Table 1. Syndrome measurement outcomes and their corresponding predicted single-qubit errors.

A logical state is prepared in the computational basis using the first five (data) qubits, as shown
in Fig. 1. The next four qubits are used as ancilla qubits to measure the four stabilizers after which
four measurement outcomes (x,, x,, X3, X4) are obtained. There are 16 possible measurement outcomes
which are in a one to one correspondence with the 16 possible errors that might occur [counting
the outcome (0, 0, 0, 0) as a trivial error]. In Table 1 we list all possible measurement outcomes and
the corresponding single qubit errors. We call the implementation of the circuit and performing the
measurement step a cycle, which is shown in Fig. 1. If one goes through a cycle and a single error
occurs on any of the first 5 qubits, this might be reflected in the measurement result and thus detected.
But instead suppose that no errors occur on the data qubits but right before the measurement step a
bit-flip error occurs on the first syndrome qubit, giving the measurement outcome of (1, 0, 0, 0). An
incorrect interpretation of the result would be to conclude that one of the 16 possible errors on the
data qubits has occurred, whereas in fact the fault lies with a syndrome qubit. We therefore require a
protocol that is tolerant to a single syndrome-qubit (or readout) error. To this end, we note that for
errors uncorrelated in time, it is likely that after readout and re-initialization that the syndrome qubit
will return to its original “faithful” state at the end of the next cycle. The procedure followed in our
simulations is therefore the following:

1. With the initial 9-qubit density matrix (representing data and syndrome qubits) perform the sta-
bilizer measurements and the measurement step to complete one cycle. Record the measurement
outcome.

2. For the next cycle, re-initialize the syndrome qubits but use the 5-qubit density matrix from the
end of the last cycle.
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Figure 2. Logical error rate for the |0), state with T, =T,100 us.

3. Repeat step 2 until the same measurement outcome is obtained three times in succession. Call this
event the completion of a trial.

After observing the same measurement outcome for three cycles in a row, we calculate

P=1-"Tr(pp,). (®)

where p, is the data-qubit density matrix obtained at the end of the final cycle and p,, is the data-qubit
density matrix predicted by the stable measurement outcome. We then define the logical error rate as

I sz,

N trials (9)

where N is the number of trials. The value of N is chosen to make the sampling errors much smaller than
the differences between the exact and PTA logical error rates we are interested in. Defining the logical
error rate this way allows us to calculate an error rate that could be measured experimentally.

Our work here is done with surface code in mind where for example one deals with single syndrome
qubits and the robustness of a syndrome measurement is achieved by comparing measurement results
from a number of measurement cycles.

For the exact calculations of the average logical error rate P, decoherence was included by using
Kraus matrices for amplitude damping and pure dephasing as defined in ref. 7. The gates are assumed to
act instantaneously and the non-unitary evolution is implemented using the operator sum representation
between the action of the gates for a time of 25 x 10~%s. Unitary gate errors are introduced by using the
non-ideal CZ gate’

1 0 0 0
0 J1—E JE° o

0 —JEe® J1—E of

0 0 0 e (10)

whereas the Hadamards are taken to be ideal. The form (10) reflects actual errors in a CZ gate imple-
mented with superconducting qubits (neglecting leakage)'S. There are three parameters in (10) that can
be changed, namely, E;, ¢ and . In the simulations, we choose ¢ =0 and distribute the total intrinsic
gate error E equally between E, and §. By intrinsic or unitary gate error we mean the gate error in the
absence of decoherence. The PTA applied to (10) yields 16 two-qubit Pauli error operators with probabil-
ities given in ref. 7. To obtain standard errors on the order 107> or smaller, about 20 trials were required,
which took several days of runtime to complete. The PTA calculations of P; were done using classical
Monte Carlo, which introduces larger sampling errors. A total of 10000 trials were performed to get
sampling errors down to around 1072

Figures 2,3 and 4 give the logical error rate P; versus intrinsic error for three values of T}, with
T,=T,. We find in these cases that the PTA overestimates the logical error rate by about a factor of 2
to 3. In Fig. 5, we fix the total intrinsic error to E=10"2 and test the PTA for five different states on the
logical Bloch sphere: the eigenstates of 0%, ¢%, and the +1 eigenstate of ¢”.
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Figure 3. Logical error rate for the |0), state with T, =T,70 us.
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Figure 4. Logical error rate for the |0); state with T, =T,40 us.
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Figure 5. Logical error rate for different states on the Bloch sphere with T, =T, 70 us. and 10~ intrinsic
error.

Conclusions

We have studied the PTA logical error rate compared to an exact calculation that includes both decoher-
ence (amplitude damping and pure dephasing) and unitary gate errors. The tests reported here include
20 different settings—physical error rates and/or initial logical states—with the PTA overestimating the
logical error rate by a factor of 1.9 to 3.1, with a mean ratio of 2.35. In the language of Megasan et al.’,
we find that the PTA is always honest (the ratio is >1) for the parameter regimes considered. We find
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no significant difference between PTA’s performance for bit-flip and phase-flip errors, which would be
reflected in Fig. 5, in contrast to the results of Tomita and Svore®. The explanation for the difference
between the results is currently not known. There are a number of significant differences between the
two arenas in which PTA’s performance is measured that could be the explanation: the fact that in surface
code we have a two dimensional structure which allows for more interactions between the qubits,the
fact that one is topological and the other is not, or it could be as simple as the work in ref. 8 studied a
considerably larger system. This warrants future study. We also find that, as expected, the PTA is less
accurate for unitary errors, in agreement with refs 7,8.
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