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Security of Semi-Device-
Independent Random Number 
Expansion Protocols
Dan-Dan Li1,2, Qiao-Yan Wen1, Yu-Kun Wang1, Yu-Qian Zhou1 & Fei Gao1

Semi-device-independent random number expansion (SDI-RNE) protocols require some truly random 
numbers to generate fresh ones, with making no assumptions on the internal working of quantum 
devices except for the dimension of the Hilbert space. The generated randomness is certified by non-
classical correlation in the prepare-and-measure test. Until now, the analytical relations between the 
amount of the generated randomness and the degree of non-classical correlation, which are crucial 
for evaluating the security of SDI-RNE protocols, are not clear under both the ideal condition and 
the practical one. In the paper, first, we give the analytical relation between the above two factors 
under the ideal condition. As well, we derive the analytical relation under the practical conditions, 
where devices’ behavior is not independent and identical in each round and there exists deviation 
in estimating the non-classical behavior of devices. Furthermore, we choose a different randomness 
extractor (i.e., two-universal random function) and give the security proof.

Truly random numbers have been wildly applied in many aspects such as numerical simulations of 
physical and biological systems, gambling and cryptography. As we know, the security of quantum key 
distribution (QKD) protocols depends on random selections of the prepared states and measurements so 
that adversary cannot utilize an attack to get secret information without being discovered.

There is no intrinsic randomness in the world of classical physics. In principle, any classical system 
admits a perfect description. And any observed randomness of a classical process is apparent (called as 
apparent randomness1), since it can be explained as the probabilistic mixture of deterministic classical 
events. Specially, the existing random number generators such as the linear feedback shift registers, 
which are characterized by using the deterministic algorithms, generate apparent randomness for us due 
to lacking of knowledge about their precise descriptions.

The advent of quantum physics makes it possible to produce intrinsic randomness. Colbeck  
et al.2 gave a RNE protocol based on Greenberger-Horne-Zeilinger (GHZ) paradox. Pironio et al.3 pro-
posed a RNE protocol, where the generated randomness was certified by non-local correlation in the 
Clauser-Horn-Shimony-Holt (CHSH) test and quantified by min-entropy4–6 of measurement outcomes. 
Fehr et al.7 further characterized the amount of the generated randomness based on the ref. 3 and pro-
posed a superpolynomial RNE protocol. Pironio et al.8 analyzed that honest and dishonest device sup-
pliers had influence on RNE and optimized conclusions of the ref. 3. The above protocols are categorized 
as DI-RNE ones, which make no assumption about the internal working of the devices.

As is well-known, DI-RNE protocols require entanglement, which results in negative effects on the 
complexity of devices and the rate of randomness generation. Thus the question whether we can gener-
ate randomness without any entanglement may arise. Fortunately, Li et al.9 proposed SDI-RNE proto-
cols without entanglement based on 2 →  1 quantum random access code (QRAC)10,11 and the generated 
randomness was certified by non-classical correlation in the prepare-and-measure test. Furthermore, Li  
et al.12 generalized the case of the ref. 9 to more general ones (i.e., n →  1 QRAC) and pointed out  
3 →  1 QRAC was the most efficient SDI-RNE protocols. These SDI-RNE protocols, where the users have 
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no knowledge of internal working of the devices except for the dimension of the systems, are preferred 
since they are convenient for application.

The security of RNE protocols is of importance. As the security of QKD protocols13–16 emphasizes 
key rate, the security of RNE ones focuses on the amount of the generated randomness. In the above 
mentioned DI-RNE protocols, the analytical relations between the amount of the generated randomness 
and Bell inequality violation was presented under the ideal and practical conditions3,7,8. And in the SDI 
scenario, the relation between the amount of the generated randomness and the degree of non-classical 
correlation was given by using Levenberg-Marquadrt (L-M) algorithm9,12 and semi-definite programm 
(SDP) relaxation17–19 under the ideal condition, respectively.

There are some problems worth thinking about in the SDI-RNE protocols. The analytical relation 
between the amount of the generated randomness and the degree of non-classical correlation under the 
ideal condition is missing. In practice, the behavior of the device is not identical and independent in each 
round and there exists deviation in estimating the non-classical behavior of the devices. It is natural to 
ask that the amount of the generated randomness and the degree of non-classical correlation satisfy what 
kind of analytical relation considering the above practical conditions.

In the paper, we give the analytical relation between the amount of the generated randomness and 
the degree of non-classical correlation under the ideal condition. Furthermore, we consider the practi-
cal conditions and establish the analytical relation which is described by a lower bound on the amount 
of the generated randomness based on the non-classical behavior of the devices. Finally, we choose 
two-universal random function20 as randomness extractor and give the security proof.

Results
The model of SDI-RNE protocols12.  Suppose that the relevant dimension d of the quantum systems 
are- known, in this work we take d =  2. But the prepared states and measurement are not described. 
Generally, Alice’s and Bob’s black boxes are systems for state preparation ( ) and measurement ( ). 
Alice chooses n bits x =  x0x1 ... xn−1 ∈  {0, 1}n at random, and sends the encoded state ρ ∈x

2 to Bob. 
Then Bob chooses a measurement operator My

b acting on the state ρx with input parameter y ∈  {0, 1, ..., 
n −  1} and output parameter b ∈  {0, 1}, where ≥M 0y

b , ∑ =M Ib y
b

2. After repeating the procedure 
infinite times, Alice and Bob can get the probability distribution ( )ρ( , ) =P b x y tr Mx y

b . The generated 
randomness can be certified by the non-classical correlation.

Denote

 ∑= (− ) ( = , ),
( ), ,

P b x y1 0
1b x y

x y

called as   expression. If the systems admit a classical description, then   expression based on 2 →  1 
QRAC satisfies  ≤ 2, denoted as  ≤→ 22 1

classical  simply. Obviously, if the systems contain the non-classical 
correlation (i.e., certain measurements act on quantum states), the data can violate the above inequality 
and makes   expression value up to 2 2  ( ≤ )→ 2 22 1

quantum . Similarly,   expression based on 3 →  1 
QRAC satisfy  ≤ , ≤→ →6 4 33 1

classical
3 1
quantum .

The amount of randomness of output b conditioned on the inputs x, y can be characterized by the 
min-entropy4

( , ) = − ( , ), ( )H B X Y B X Yplog 2Pmin 2

where the maximal guessing probability4 of B given X, Y is

( , ) = ( , ).
( ), ,

B X Y P b x yp max
3b x y

Based on equation (2), exploring a lower bound on min-entropy is equivalent to the upper bound on 
maximal guessing probability. So, to calculate the amount of the generated randomness can be converted 
into exploring maximal guessing probability for given value of   expression in the following optimiza-
tion problem.

( , ) ( )B X Ypmaximize 4

subject to:

( )ρ( , ) = , ( )P b x y tr M 5x y
b

∑(− ) ( = , ) = ,
( ), ,

P b x y1 0
6b x y

x y
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where the optimization is carried out by arbitrary quantum state ρx and positive operator valued measure 
(POVM) ,{ }M My y

0 1  defined over two dimensional Hilbert space.

Analytical relation under the ideal condition.  We give the analytical relation between the maximal guess-
ing probability and the corresponding maximal value of   expression. Moreover, we get the explicit 
bounds of   expression when there is the generated randomness. In other words, we gain the reason 
why there is not the generated randomness when the data just violates the classical bound of   expres-
sion. Here, we mainly give the results of the primitive ones (proved in the Supplementary Information).

Theorem 1. Suppose that SDI-RNE protocol based on 2 →  1 QRAC is associated with two dimensional 
Hilbert space. The analytical relation between the maximal guessing probability p and the corresponding 
maximal value of   expression is given as 

 = + ( − ) + − + ( − ) − , ( ){ }r r r r rp p pmax 2 1 2 1 2 1 1 7r
p
max 2 2 2

where ( )∈ 


+ , 


p 1 11
2

1
2

 and r is one of the real roots of equation (8) with a variable x

+ ( − ) + ( − ) +

− ( − ) + ( − ) − ( − ) = . ( )

x x x

x

p p p

p p p p

4 4[ 2 1 4 1 ]

4[ 2 1 2 1 ] 2 1 0 8

4 3 2

2

According to the analytical relation (7), denoted as  = ( )g pp
max

1 , we explore the critical value of   
expression conditioned on there exists the generated randomness. Let p =  1 (i.e., there is not the gener-
ated randomness of the outputs), we get  = .= 2 6403p 1

max  (r =  0.7904) by taking over all the real roots of 
the equation expressed as 4x4 +  4x3 +  x2 −  4x −  1 =  0. Further, we learn that g1 is the monotonically 
decreasing and continuous function. As long as  > .2 6403, the outputs exhibit randomness (p <  1).

Theorem 2. Suppose that SDI-RNE protocol based on 3 →  1 QRAC is associated with two dimensional 
Hilbert space. The analytical relation between the maximal guessing probability p and the corresponding 
maximal value of   expression is given as 



( )
( )

=






( − ) + ( − )

−
−

+
( − ) + − − ( − ) 




+ − −

+ − − − −




+ + +

+ + − + ( − ) + + − −

+ ( − ) + − − −




,

( )

( , , , )
r m

m
r r

s s m
m

rv r v m

r v r v m r rsv

r rsv r r s v

r r s v

p p

p p

max 2 1 2 1 1 1

2 1 1 2 1
2

1 1

1 1 1 1
2

4 1 4
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where ( )∈ 


+ , 


p 1 11
2

1
3

 and the values of (r, s, v, m) is one of the real roots of the equation set in vari-
ables (x, y, z, u) in the Supplementary Information.

Similar to the above analysis, we calculate the critical value of   expression conditioned on there 
exists the generated randomness. Let p =  1, we get  = .= 6 6543p 1

max  ((r, s, v, m) =  (0.7730, 0.3837, 
− 0.1529, 1)) by taking over all the real roots of the equation set in the Supplementary Information. So, 
we conclude that as long as  > .6 6543, the generated randomness can be certified.

Analytical relation under the practical condition.  In practice, there exist some unideal factors during the 
experiment, for example, the behavior of the devices is not identical and independent in each round, and 
estimating the non-classical behavior of the devices causes deviation. We establish the analytical relation 
between the amount of the generated randomness and the degree of non-classical correlation under the 
practical condition. As well, our result can be applied to any RNE protocols with quantum system of 
arbitrary dimension and a general form of   expression in the SDI scenario.

Description of the devices used t times in succession.  We consider a pair of devices P M( & ), 
where the state preparation ( ) and measurement ( ) can be regarded as two black boxes. The prepa-
ration box contains a set of arbitrary states ρ ∈ 2 and the measurement box contains a sequence of 
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arbitrary measurements { }M y
b

i
i  defined over two-dimensional Hilbert space, where measurement opera-

tor M y
b

i
i represents input parameter yi and output parameter bi.

We make the most basic assumptions as follows:

(1)	 the preparation system and the measurement system conform to the quantum theory;
(2)	 there is no additional communication between the state preparation system and the measurement 

system in each round. That is, the state preparation system and the measurement system have a single 
qubit for communication and are not allowed to divulge information to eavesdropper in each round;

(3)	 the inputs X, Y are random variables that are independent and uncorrelated with the devices.

No constrains are imposed on the states and measurements except for their dimension and the above 
assumptions. But the behavior of devices is not identical and independent in each round i, which implies 
that the previous i −  1 states, measurement operators and measurement outcomes affect the ith measure-
ment outcomes. Note that we assume that the state preparation system are not entangled with the meas-
urement system or any other party in the following calculation of the amount of generated randomness, 
which is similar to that in previous work7,8.

We denote the inputs by xi ∈  X, yi ∈  Y and the measurement output by bi ∈  B in the ith round. We 
denote the first i inputs by xi =  (x1, x2, ..., xi) and define yi, bi similarly. The devices’ behavior cannot be 
identical and independent in each round. That is, the behavior of devices varies from one round to 
another making use of internal memory, which is depicted by a sequence of unitrary transformations  
U0, ..., Ut−1 acting on  ⊗P M. Ui−1 is used for the state and the measurement operator before the ith 
round (U0 =  I in the first round). In details, suppose that Alice chooses the state ρx1

 at will and Bob 
chooses the measurement setting M y

b
1
1 in the first round, we get ( )ρ( | , ) =P b x y tr Mx y

b
1 1 1 1 1

1 . Alice and 
Bob choose ρ , Mx y

b
2 2

2 at random, due to un-identical and dependent between rounds, we get 

( )ρ( | , , , , ) = †P b x y b x y tr U M Ux y
b

2 2 2 1 1 1 1 12 2
2 , where the operation U1 encodes the information of the 

inputs x1, y1 and output b1 in the first round. The given conditional probability distribution 
( , )P b x yB X Y

t t t
t t t , which describes the input-output behavior of t sequential interactions with the devices 
(  & ), is defined as

∏ ∏( ) = ( | ) = ( | ),
( )=

− − −

=

−P b x y P b x y b x y P b x y e
10B X Y

t t t

i

t

i i i
i i i

i

t

i i i
i

1

1 1 1

1

1
t t t

where ρ( | ) = ( ), =−
− −

− − − −†P b x y e tr U M U e b x yi i i
i

i x y
b

i
i i i i1

1 1
1 1 1 1

i i
i . The first equality holds because of 

successive Bayes’ principle and the second one shows that the output in the ith round is determined by 
the inputs of the ith round and the pervious inputs and outputs.

We learn that there is one-to-one correspondence between the maximal guessing probability and the 
corresponding maximal value of   expression based on the analytical relations (i.e., collectively called 
g1) in the above part. The analytical relations show

  = ≤ = , ( )( ) ( ) − ( )− −
p 2 2 2 11g g glog logp2 1

1 max
2 1

1

where g1 is the monotonically decreasing and continuous function of the corresponding maximal value 
of   and = − ( )−g glog2 1

1  is the convex function of the value of   expression.

Estimating the degree of non-classical correlation.  Here, we estimate   expression value to 
characterize the degree of non-classical correlation.

For the first round,   expression value is established by  , , = ( | )b x y P b x y[ ] [ ]1 1 1 1 1 1 1 . For other 
rounds, there are slightly different because of the present round depending on the inputs and outputs of 
the previous rounds. So,   expression value in the ith round is  , , = ( | )−b x y P b x y e[ ] [ ]i

i i i
i i i

i 1 .
Let

 ∑, , = , ,
( )=

b x y
t

b x y[ ] 1 [ ]
12

t t t

i

t

i
i i i

1

be the average value of   expression, averaged over t rounds. In order to estimate the average value  , 
we introduce the following estimator ̂ , determined from the observed statistics:

 ∑, , = ,
( )=

ˆ ˆb x y
t

[ ] 1
13

t t t

i

t

i
1
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where  α= ∑
( )χ

, , , ,
= , = , =

( ) ( )
ˆ

i b x y b x y
x x y y b b

P x P y
i i i

X Y
 is the observed value of   expression in the ith round and 

χ(x) is the indictor function:

χ ( ) =




, ,
, . ( )

x
x1 if is observed

0 otherwise 14

We derive the result of estimating the average value   in the following (proved in the Supplementary 
Information).

Lemma 3. Let the symbols be the same as before. For any δ >  0, the average value   and the observed 
average value ̂  satisfy 

  δ( ≥ − ) ≥ − , ( )
δ
µ

−
ˆP 1 2 15

t
ln2 2

2

2

where µ = +α W
P Q

max

min
, αmax =  max|{αb,x,y}|, Pmin =  min{P(x)P(y)} and WQ is the maximal value of   

expression allowed by quantum theory.
From inequality (15), we learn that the average value   can be larger than the observed average value 

̂  up to some δ with probability 1 when experiment’s rounds tend toward infinity.

Bounding the min-entropy.  Here, we proceed with the last step to get the analytical relation between 
the amount of the generated randomness and the observed average value ̂  under the practical condi-
tions. Just as the refs 7, 8 consider the average Bell value in some interval as a prior condition to make 
the min-entropy meaningful in the DI case, we use the technique7 to quantify the generated randomness, 
which is depicted by a lower bound on min-entropy of outputs conditioned on the event that the observed 
average value ̂  lies in some interval.

Denote W0 by the maximal value of   expression conditioned on Hmin(Bt|XtYt) =  0. W0 >  Wcl (the 
classical bound of   expression), which is different from that of Bell experiments. We partition the 
interval [W0, WQ] ⊂ R into L disjoint blocks: ∪ ∪ ∪, = Φ Φ ... ΦLW W[ ]Q0 1 2  with Φ l =  [Wl−1, Wl).

Here, a basic event space G is the set that includes all possible (bt, xt, yt, l) for the above experiment. 
Define an event G W W δ= ( , , , ) ≥ −ˆb x y l{ }t t t

1 . According to Lemma 3, the event 1 occurs with 
high probability. In fact, the values of (bt, xt, yt) can determine the value of ̂  and random variable l. 
Next, we define an event  = ( , , , ) ( , ) ≥{ }b x y l P x yt t t t t

2 1
1
2

 and an event 

 = ( , , , ) ( , ) ≥
L{ }b x y l P l x yt t t

L X Y
t t

3
1

t t
1 2 . Let   ∩ ∩1 2 3 be the good event, denoted as  . We 

call   ∩ ∩1 2 3 as the good event (i.e., ) since we can get the amount of the generated randomness 
as long as all of the events  ( ,1 2, and  )3  occur. Note that an event is a set that contains one or more 
results of a basic event space, which is a subset of the basic event space. As well, each result of an event 
is a element (basic event).

The following lemma is proven in the Supplementary Information.

Lemma 4. There exist the above good event   with probability 

( ) ≥ − ⋅ − . ( )

δ
µ

−

L
P 1 3 2 1

16
t

ln2 2

2

2

We try to put a bound on the min-entropy of the outputs Bt conditioned on the inputs (Xt, Yt) and 
the observed average value ̂  in some interval.

Theorem 5. Let (X, Y) be identical, independent and random sources and δ >  0 be an arbitrary parame-
ter. For any devices’ behavior, the observed distribution P =  {P(bt, xt, yt)} characterizing successive t rounds 
satisfies 

( , , , ) ≥ ( ) − − ( )LH B X Y l tg W 2 log 1 17t t t
lmin

for all xt ∈  Xt, yt ∈  Yt, ∈ , ..., −Ll {0 1} with ( ) ≥ − ⋅ −
δ
µ

−

L
P 1 3 2

t
ln

2

2 2 2 1 , ( , , , )>P b x y l 0B X Y L
t t t

t t t .

Proof. Without loss of generality, suppose that l is the unique value with  δ≤ − <−
ˆW Wl l1 .

Let  ∩( , , , ) ∈b x y lt t t
2 3, we consider nontrivial cases, i.e., ( , , , ) ∈b x y lt t t

1. Otherwise, 
( , , , ) =P b x y l 0t t t

1 .
According to the description of  , we get
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 





 

( , , , ) = ( , , )

=
( , , )

( , )

≤
( , )

⋅ ( , )

≤ , ( )

, ,

, ,

, ,

− ( )

B X Y l P b x y l

P b l x y

P l x y

P b x y

P P l x y

L

p max

max

max

2 2 18

t t t

b x y
B X Y L

t t t

b x y

B L X Y
t t t

L X Y
t t

b x y

B X Y
t t t

X Y L X Y
t t

tg W

1

2

t t t
t t t

t t t

t t t

t t

t t t

t t t

t t t t

l

1

1

1

1 1

where the penultimate inequality holds because of  ( , , ) ≤ ( , )P b l x y P b x yB L X Y
t t t

B X Y
t t t

t t t t t t
1

 and the 
last one holds by using equations (10), (11) and (12).

Furthermore, with the above inequality, it is easy to show that

 ( , , , ) = − ( , , , )

≥ ( ) − − . ( )L

H B x y l P b x y l

tg W

log max

2 log 1 19

t t t
P b

B x y L
t t t

l

min 2 t
t t t

Here, suppose that disjoint blocks =L 100, δ =  0.0001 and the experiment’s rounds t =  1000, 4000, 
respectively. Under the ideal and practical conditions, we compare the lower bound on min-entropy of 
the generated randomness of SDI-RNE protocols based on 2 →  1 and 3 →  1 QRACs in Figs  1 and 2, 
respectively. Obviously, when rounds of experiments is increasing and the number of the disjoint blocks 

Figure 1.  Compare the lower bound on the amount of the generated randomness in the SDI-RNE  
protocol based on 2 → 1 QRAC under the different conditions. (a) Under the condition of the experiment’s 
rounds t =  1000. (b) Under the condition of the experiment’s rounds t =  4000.

Figure 2.  Compare the lower bound on the amount of the generated randomness in the SDI-RNE  
protocol based on 3 → 1 QRAC under the different conditions. (a) Under the condition of the 
experiment’s rounds t =  1000. (b) Under the condition of the experiment’s rounds t =  4000.



www.nature.com/scientificreports/

7Scientific Reports | 5:15543 | DOI: 10.1038/srep15543

is fixed, the Figures reveal that the gap of the amount of the generated randomness between the ideal 
and practical conditions is rapidly closing. Note that W in the Figures represents the observed average 
value.

Randomness extraction.  As we know, by using a randomness extractor20,21, the outputs bt can be con-
verted to a string that is nearly uniform and uncorrelated to the information of an adversary.

We propose a SDI-RNE protocol with another randomness extractor which is different from ones of 
the refs 7, 8. The users ask providers for two devices, where state preparation ( ) has 2n settings and 
measurement ( ) has n settings and can make two possible output 0, 1. Furthermore, the users ask that 
these devices satisfy the most basic assumptions. But, they have no knowledge of the internal working 
of devices except for their dimension. The protocol is presented in the following.

The users allow a single qubit to communicate in each round and do not send any information outside 
the laboratory.

(1)	 Divide their initial truly random string S into S1 and S.
(2)	 Introduce (xi, yi) ∈  S1 into the devices and obtain output bi.
(3)	 Repeat step (2) until exhausting S1 and build a output string.
(4)	 Calculate the observed average value and determine the value l that  δ− ∈ Φˆ

l. If  δ− <ˆ W 0, 
the protocol aborts.

(5)	 Make use of S to choose the two-universal random function f and obtain a finial string. Based on 
Theorem 5, the length of the finial string is

=




− ⋅ −






+ ( ) − + .

( )

δ
µ

−

L
Ln tg W2 log 3 2 1 2 log 1

20
s sec

t

l2 ln 2

2

2

In order to prove security of the proposed protocols, we make the lemma for preparation (proved in 
the Supplementary Information).

Lemma 6. Suppose that , → ,f : {0 1} {0 1}t ns is the two-universal random function22 and = ( )r f bn ts , where 
bt ∈  {0, 1}t. We get 

  ∑ ( , , , , ) − ( , , , ) ≤ ( , , , ) .
( ),

−P r f x y l P f x y l b x y lp2 2
21r f

n t t n t t n t t t

ns

s s s

Theorem 7. The proposed SDI-RNE protocol is  sec secure. That is, it is  sec indistinguishable from a ideal 
protocol.

Proof. Based on the definition of security of protocol, we get
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The penultimate inequality holds by using by the above Lemma 6.

Discussion
In the paper, we have showed the analytical relations between the amount of the generated randomness 
and the degree of non-classical correlation under the ideal and practical conditions. As a byproduct, the 
critical values of   expression have been presented when there exists the generated randomness. 
Moreover, the case, where the adversary holds the classical side information8 of the devices, can be 
regarded as our case conditioned on the particular value of the side information. Finally, we choose the 
two-universal function as randomness extraction and give the security proof. Whereas, there are still 
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interesting questions that remain open. How can we quantify the generated randomness by directly using 
the observed probability distribution. Furthermore, for a given observed probability distribution, whether 
and how to find an optimal witness of given dimension with the method in the refs 19.
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