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Bending light via adiabatic 
optical transition in longitudinally 
modulated photonic lattices
Bin Han, Lei Xu, Yiling Dou, Jingjun Xu & Guoquan Zhang

Bending light in a controllable way is desired in various applications such as beam steering, 
navigating and cloaking. Different from the conventional way to bend light by refractive index 
gradient, transformation optics or special beams through wavefront design such as Airy beams 
and surface plasmons, we proposed a mechanism to bend light via resonant adiabatic optical 
transition between Floquet-Bloch (FB) modes from different FB bands in longitudinally modulated 
photonic lattices. The band structure of longitudinally modulated photonic lattices was calculated by 
employing the concept of quasi-energy based on the Floquet-Bloch theory, showing the existence 
of band discontinuities at specific resonant points which cannot be revealed by the coupled-mode 
theory. Interestingly, different FB bands can be seamlessly connected at these resonant points 
in longitudinally modulated photonic lattices driven by adiabatically varying the longitudinal 
modulation period along the propagation direction, which stimulates the adiabatic FB mode 
transition between different FB bands.

Photonic lattice has provided a versatile platform to manipulate the flow of light due to its design-
able geometric configuration therefore its band structure and optical properties, and various novel 
optical effects such as diffraction management1,2, lattice solitons3–7, and Anderson localization8,9 were 
reported. Recently, photonic lattices were engineered to visualize with optical waves a wide variety of 
quantum mechanical effects such as Bloch oscillations10–13, Zeno effect14,15, Zener tunneling16–18, and 
PT-symmetry19, to mention just a few. In addition, the introduction of longitudinal periodic modulation 
along the propagation direction of the lattices, which mimicks the dynamic action of external driving 
fields on quantum systems, may result in interesting optical-analogies of quantum coherent effects such 
as direct and indirect optical transition20,21 via spatial Rabi oscillation22 under the phase-matching con-
dition, inhibition of light tunneling23,24 due to coherent destruction of tunneling25,26 in longitudinally 
modulated arrays with out-of-phase modulation between neighboring channels and subdiffractive prop-
agation of light in bi-periodic arrays of fibers27 and photonic crystals28. More quantum-optical analogies 
such as coherent population transfer and dynamic localization were also demonstrated in periodically 
curved waveguide arrays18,29–31.

It is well known that the band structure of the photonic lattices is very important to understand the 
optical properties of the corresponding photonic lattices. Tremendous efforts have been put to calculate 
the band structures of various photonic lattices, and great progress has been made in the literature2,6,7. For 
longitudinally modulated photonic lattices, the perturbed coupled-mode theory20,21,27 may not be able to 
give accurate configuration of the band structure therefore the optical properties of the lattices, especially 
when the longitudinal modulation depth is comparable to or even larger than the transverse modula-
tion depth. In fact, Floquet-Bloch theory is widely employed to calculate the band structure of compli-
cated photonic structures such as photonic topological insulators32–35. In this article, we will calculate the 
band structure of longitudinally modulated photonic lattices based on the concept of quasi-energy36 and 
Floquet-Bloch (FB) formalism, which have also been employed to explain quantum coherent effects in 
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atomic or molecular systems driven by a temporally periodic field, especially by an intensive laser field, 
leading to the discovery of many novel atom-field interaction phenomena that cannot be explained by 
the general perturbation theory26,37–39. Band discontinuity and adiabatic optical transition between dif-
ferent FB modes are predicted at specific resonant points, which can be used to manipulate the flow of 
light in photonic lattices with controllable bending light trajectory.

Results
Quasi-energy and Floquet-Bloch theory in longitudinally modulated photonic lattices.  The 
evolution of a light beam with a slowly varying electric field amplitude ψ(x, z) propagating along the z 
direction of a longitudinally modulated photonic lattice can be described by20
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For simplicity but without loss of generality, the refractive index distribution of the photonic lattice is set 
to be n =  n0 +  δncos(ωxx)cos(ωz), which is periodic in both x and z directions with ωx and ω being the 
transverse and longitudinal angular frequencies of the refractive index modulation of the lattice, and the 
corresponding transverse and longitudinal lattice periods are D =  2π/ωx and T =  2π/ω, respectively. n0 is 
the background refractive index and δn is the refractive index modulation depth. Therefore, the optical 
potential in Eq. (1) can be expressed as ω ω( , ) = ( ) ( )δV x z x zcos cosk n

n x
0

, where k is the wave number 
of light in background. Note that the longitudinal refractive index modulation depth of the lattice is the 
same as that of the transverse one, therefore, it cannot be simply treated as a weak perturbation as done 
in the literature20,21,27. Such a strong longitudinal periodic modulation in the refractive index of the lat-
tice, which is an optical analogy to a strong temporally periodic driving field in a quantum system26, is 
expected to have dramatic effects on the band structure of the lattice and therefore the beam evolution 
behaviors in the lattice. In addition, the longitudinal modulation period T is another important param-
eter that will have significant influence on the band structure of the lattice and also the dynamic propa-
gation behavior of light in the lattice, as we will show in the following.

According to the Floquet-Bloch theory, the solution of Eq. (1) is of the form
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Where β(kx) is the propagation constant, which will be in the form of a series of bands βn(kx) with band 
index n =  1, 2, 3... for a photonic lattice40, kx is the transverse wave vector. The FB modes φ ( , )β, x zkx

 are 
periodic in both x and z directions, satisfying φ φ φ( , ) = ( + , ) = ( , + )β β β, , ,x z x D z x z Tk k kx x x

. By 

substituting Eq. (2) into Eq. (1), one arrives at the stationary-like Schrödinger equation36
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Here the eigen propagation constant β(kx), the analogy of quasi-energy in a quantum system driven by 
a temporally periodic field26,36, is real-valued and z-independent although the Hamiltonian ( , )H x zkx

 is 
z-dependent. One notices from Eq. (2) that modes φ φ( , ) = ( , )β β

ω
, ,x z x z ek k

iq z
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, with q being an inte-
ger q =  0, ± 1, ± 2,..., are also solutions of Eq. (1) but with shifted eigenvalue βq(kx) =  β(kx) −  qω. Such 
shifted solutions are originated from the longitudinal periodicity of the optical potential V(x, z). Therefore, 
similar to the Brillouin zone due to the transverse periodicity of a photonic lattice, one can also restrict 
the eigenvalue bands βq(kx) into a unit region of a longitudinal reciprocal lattice vector ω.

To solve Eq. (3), one may expand the FB modes φ ( , )β, x zkx
 on the basis of a set of orthogonal basis
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where Cn,q(kx) is the expanding coefficients, φ ( ), xn k
0

x
 is the eigenstate on the nth-band of the unperturbed 

Eq. (3) (i.e., V(x, z) =  0) with the corresponding eigenvalue β ( )kn x
0 , which is obviously in the form of a 

plane wave with a propagation constant β ( )kn x
0  (for detailed concrete expressions of φ ( ), xn k

0
x

 and β ( )kn x
0 , 

please refer to the corresponding text in Section Methods).
By substituting Eq. (5) into Eq. (3), one gets
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with β β ω( ) = ( ) −, k k qn q x n x
0 0 . Detailed calculation of matrix element Mn,n′;q,q′(kx) can be found in 

Section Methods. It is evident that the matrix is diagonal when the refractive index modulation vanish-
ing (δn =  0), corresponding to a set of orthogonal plane waves with eigenvalues β ( ), kn q x

0 , which form a 
series of shifted bands. Interestingly, different shifted bands indexed by (n, q) and (n′ , q′ ) may intersect 
at specific resonant point kx

0 where β β( ) = ( ), ′, ′k kn q x n q x
0 0 0 0 . According to the von-Neumann-Wigner 

degeneracy theorem41, by introducing a finite refractive index modulation δn which results in non-zero 
non-diagonal matrix elements in Eq. (7), such band crossing may be avoided when they belong to the 
same symmetry group of Hamiltonian H kx

, leading to band discontinuity at the resonant point kx
0.

Band structure of longitudinally modulated photonic lattices.  For a longitudinally modulated 
photonic lattice with an optical potential ω ω( , ) = ( ) ( )δV x z x zcos cosk n

n x
0

, the non-diagonal matrix ele-
ment in Eq. (7) is non-zero only when (δq,q′+1 +  δq,q′−1)(δn,n′−2 +  δn,n′+2 +  δn=1,n′=2 +  δn=2,n′=1) =  1 is satis-
fied. This means that only interactions among the nearest and the next-nearest bands have to be 
considered, which will dramatically simplify the band structure calculation. As an example while at the 
same time without loss of generality, let us consider a lattice with D =  10 μm, T =  1300 μm, δn =  5 ×  10−4, 
and n0 =  2.3, which may be fabricated by using the proton-exchange or Ti in-diffusion techniques in 
lithium niobate crystals19,42,43 or the light-induction technique in photosensitive materials28. The wave-
length of the incident light is set at λ =  0.6328 μm. The band structure of the lattice can be obtained by 
directly solving Eq. (6).

Figure 1(a) shows a portion of the band structure β(kx) for the case when V(x, z) =  0, where the red 
solid thin curve is the 1st-band with band index (n, q) =  (1, 0) and the green and blue solid thin curves 
are the ones indexed by (2, 0) and (3, 0), while the dashed thin curves are the corresponding shifted 
bands, respectively. Note that, as a proof of principle and for clarity, other higher-order bands with band 
index n >  3 are not shown here. One notes that there are crossing points A1 and A2 between the two 
bands indexed by (1, 0) and (2, − 1), and B1 and B2 between the two bands indexed by (2, 0) and (1, 1), 
respectively, at the resonant transverse wave vector kx

0 denoted by the vertical black dashed lines in Fig. 1. 
These crossings, according to the von-Neumann-Wigner degeneracy theorem41, will be avoided when a 
non-zero periodic refractive index modulation δncos(ωxx)cos(ωz) is introduced, therefore, leading to 
band discontinuities at resonant points, as shown in Fig. 1(b). Note that the degeneracy is not lifted at 
other crossing points such as C1, C2 and those at the boundary of Brillouin zone because the crossing 
points belong to different symmetry groups of Hamiltonian H kx

 and they do not interact with each 
other26,41. Referring to the Brillouin zone in the transverse dimension, one could also restrict the extended 
FB bands into a reciprocal lattice primitive zone in the longitudinal dimension36,44, and the reduced band 
structure for the first two bands is shown by the bold red and green curves in the shadow region in 
Fig. 1(c). Here, higher-order bands with n ≥  3 are not shown in the reduced shadow region for clarity. 
Typical FB modes with transverse wave vectors kx =  0 and π= . /k D0 44x

0  (at the resonant point) are 
shown in Fig. 2, which can be experimentally excited by two interfering plane waves or prism coupling 
method, or asymptotically implemented by simply launching a wide Gaussian beam with a well-defined 
central transverse wave vector matched with that of the FB mode45, as will be confirmed numerically in 
the following.

Figure  1(d) shows a portion of the reduced band structure of a lattice with a longitudinal lattice 
period T =  500 μm, other lattice parameters are the same as those in Fig. 1(c). Again, only band indexed 
by n =  1 (band 1, the red bold solid curves) and band indexed by n =  3 (band 3, the blue bold solid 
curves) are shown in the reduced shadow region for clarity. In this case, crossing points between bands 
indexed by n =  1 and 3 are found to be avoided. Physically, such band discontinuity is originated from 
the introduction of periodic modulation on the refractive index in both the transverse and longitudinal 
dimensions. Note that the resonant point kx

0, where the band discontinuity occurs, shifts when the lon-
gitudinal modulation period T changes. It can be easily confirmed that the band structure will return 
back exactly to the normal one with the band discontinuity located at the boundary of the first Brillouin 
zone (in this case, one calls it as band gap in general) when the longitudinal period T tends to be 
infinitely large. Therefore, the band structure of waveguide arrays without longitudinal modulation is 
only a special case in which the longitudinal modulation period T is infinitely large.
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From the band structure in Fig. 1(c,d), one sees that, although there is band discontinuity in the same 
band, bands with different n-index will be smoothly connected at the resonant wave vector kx

0. This is 
because the propagation constant, i.e., the quasi-energy in quantum mechanism, of the FB modes at the 
resonant point in both bands will be shifted by a same amount, as can be clearly seen in Eq. (7) where 
the off-diagonal matrix elements responsible for the band shift are exactly the same. One may also note 
that the field distribution of the FB modes at the resonant point, although in different bands, are the same 
(see Fig. 2(c–f)). Combining the fact that the resonant transverse wave vector kx

0 moves as the longitu-
dinal lattice period changes, this provides a novel and efficient way to stimulate adiabatic optical transi-
tion between optical modes in different FB bands, which can be used to manipulate the flow of light in 
lattices, as we will discuss in the following section.

Adiabatic optical transition and bending light in longitudinally modulated photonic lat-
tices.  Figure  3(a) shows a typical spectrum of propagation constant β as a function of longitudinal 
modulation period T at a specific incident transverse wave vector kx =  0.7π/D. The lattice parameters are 
D =  10 μm, δn =  5 ×  10−4, and n0 =  2.3, respectively. One sees that the band indexed by n =  1 is smoothly 
connected to the band indexed by n =  3 at the resonant longitudinal period T0 =  428 μm. Therefore, for 
a lattice with its longitudinal modulation period varying adiabatically from T =  600 μm to T =  300 μm 
(linearly here) along the propagation z direction, when one launches a FB mode with a transverse wave 
vector kx =  0.7π/D into the lattice at the T =  600-μm port (at point a in Fig. 3(a)), it will evolve along 
the upper spectral curve in Fig. 3(a) and transit adiabatically to the FB mode in band 3 at the resonant 
modulation period T0 (at point b in Fig. 3(a)). This is an exact optical analogy to spin exchange related 
to a rapid adiabatic crossing of resonance in nuclear magnetic resonance (NMR) when it is driven by a 
temporally varying magnetic field with adiabatically increased frequency26,44,46.

Figure 1.  Band structures of longitudinally modulated periodic photonic lattices. (a) is the case with 
V(x, z) =  0, where the red, green and blue solid thin curves are the bands indexed by (n, q) =  (1, 0), (2, 0) 
and (3, 0), respectively, while the colored dashed curves are the corresponding shifted bands. A1 and A2, B1 
and B2, and C1 and C2 are crossing points where β β( ) = ( ), ′, ′k kn q x n q x

0 0 0 0 . The vertical dashed lines indicate 
the positions of the resonant transverse wave vector kx

0. (b) is the longitudinally extended FB band structure 
and (c) is the corresponding reduced band structure of a lattice with T =  1300 μm, and (d) is the reduced 
band structure of a lattice with T =  500 μm, respectively, where the red, green and blue bold solid curves are 
the bands indexed by n =  1, 2 and 3, respectively. The point R in (c) is the resonant point at which the 
transverse velocity of FB modes in different bands is the same. The other lattice parameters are D =  10 μm, 
δn =  5 ×  10−4, and n0 =  2.3, which are the same for (a–d). The operating wavelength is set at 0.6328 μm.
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Interestingly, such adiabatic mode evolution and optical transition can be used to control the beam 
propagation trajectory in the lattice because different FB modes are of different transverse propaga-
tion velocity determined by ∂β/∂kx. Figure 3(b) shows the beam propagation trajectory of a wide input 
Gaussian beam in the lattice with the same lattice parameters as those in Fig. 3(a) when the light evolves 
along the upper spectral curve (a →  b →  c) in Fig. 3(a). Here, a wide input Gaussian beam with a waist 
width being 5D is used in order to define a narrow spatial spectral content of the excitation. The central 
incident transverse wave vector of the light at the T =  600-μm input port is set at kx =  0.7π/D. It can be 
easily confirmed numerically that over 80% of the input energy of the Gaussian beam will be converted 
into the target FB mode of lattice with its transverse wave vector kx =  0.7π/D. One sees that, along with 
the adiabatic mode evolution and optical transition, the beam trajectory bends during its propagation 
in lattice. It is worth mentioning that the adiabatic optical transition is reversible and the FB modes in 
band 3 can transit adiabatically to the FB modes in band 1 via the reversed spectral curve (c →  b →  a) 
in Fig. 3(a). This means that, by alternatively repeating the adiabatic optical transition from band 1 to 
band 3 and its reverse process along the propagation z direction, light can be designed to propagate in 
the lattice with a snake-like trajectory, as shown in Fig. 4(a). More flexibly, different adiabatic mode evo-
lution and optical transition processes may be combined and followed one by another one, and therefore 

Figure 2.  The field distribution of the FB modes with the transverse vector at kx = 0 (a, b) and at the 
resonant points π= . /k D0 44x

0  (c,d) and π= . /k D0 46x
0  (e,f), respectively. The longitudinal modulation 

period T is 1300 μm for (a–d) and 500 μm for (e,f), respectively, and the other lattice parameters are the 
same as those in Fig. 1. The vertical dashed blue lines denote position of the refractive index peak at the 
input lattice surface.
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complicated light propagation trajectory could be designed in principle. Figure 4(b) shows such an exam-
ple, where a cascading adiabatic optical transition scheme (band 1 →  band 3 →  band 1 →  band 2 →  band 
1) is designed, and a bending light with a designable large curvature trajectory is achieved. It is evident 
that any perturbation on the lattice parameter will influence the band structure of lattice, therefore the 
beam propagation trajectory. However, the practical tolerance on the deviation of lattice parameter is 
indeed very complicated and dependent on the requirement of specific applications, which is evidently 
deviated from the main topic of this paper and will not be discussed in detail here. Also, we suppose that 
the lattice is large enough so that the boundary effect is negligible.

Discussion
Bending the light propagation trajectory in a designable way is desired in many practical applications 
such as beam steering and switching, beam navigation and even cloaking, and it may be achieved by 
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Figure 3.  (a) Spectra of β as a function of longitudinal modulation period T. The FB modes in bands 
indexed by n =  1 and n =  3 are indicated by the red and blue bold solid curves, respectively. The thin straight 
lines show the spectra of β for corresponding lattices without longitudinal modulation. The dashed vertical 
line indicates the position of resonant longitudinal period T0 where adiabatic optical transition between FB 
modes from different bands occurs. (b) Beam propagation trajectory of a wide Gaussian beam in lattice 
with adiabatically decreasing longitudinal modulation period T. The yellow dashed line corresponds to the 
resonant longitudinal modulation period T0. The red arrow indicates the incident beam at λ =  0.6328 μm 
with a transverse wave vector kx =  0.7π/D. The other lattice parameters are D =  10 μm, δn =  5 ×  10−4 and 
n0 =  2.3, respectively.

Figure 4.  Snake-like light propagation in longitudinally modulated photonic lattices with adiabatically 
varying longitudinal modulation period T. (a) is the trace achieved by alternatively repeating the adiabatic 
FB mode evolution and optical transition from band 1 to band 3 and its reverse process shown in Fig. 3(a). 
(b) is the case by cascading adiabatic FB mode evolution and optical transition via a scheme band 1 →  band 
3 →  band 1 →  band 2 →  band 1. The red arrow indicates the incident beam at λ =  0.6328 μm with a 
transverse wave vector kx =  0.7π/D. The other lattice parameters are D =  10 μm, δn =  5 ×  10−4 and n0 =  2.3, 
respectively.
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designing the refractive index gradient along the light propagation trajectory47 or through transforma-
tion optics48,49 or by employing special beams with special wavefront structure such as Airy beams50–52 
or Airy plasmons53–58. Note that the effective average refractive index of our longitudinally modulated 
photonic lattice is a constant n0, and the mechanism to bend the light propagation trajectory in our case 
relies on the adiabatic optical mode evolution and optical transition of FB modes among different FB 
bands, which is completely different from those through refractive index gradient or wavefront design 
mentioned above.

One may note that curved beam trajectory can also be observed in other transversely or longitudi-
nally modulated lattices, for example, through Bloch oscillation in waveguide arrays with equally spaced 
increasing propagation constant in the transverse dimension10–13 and Rabi oscillation in waveguide arrays 
with weak homogeneous modulation in the longitudinal dimension20,21. However, the mechanisms lead-
ing to curved beam trajectories in Bloch oscillation and Rabi oscillation are totally different from that 
in our case. Bloch oscillations, which manifests themselves as transverse oscillations of the propagating 
light beam, is due to the excitation and beating of FB modes with equally spaced propagation constants12. 
For Rabi oscillation, the beam oscillates between two different FB modes from different bands, either 
directly or indirectly, depending on the momentum compensation of the transverse wave vector20. In our 
case, the longitudinal period of the photonic lattices changes linearly and adiabatically along the prop-
agation direction, and the beam evolves continuously and adiabatically during its propagation, which 
experiences many FB modes in sequence in one band and then transits adiabatically into the FB modes 
in other band at the resonant point and evolves continuously and adiabatically again in the second band. 
Note that these phenomena are optical analogies of different quantum effects, i.e., Bloch oscillation, Rabi 
oscillation, and adiabatic electron spin exchange in NMR driven by a temporally varying magnetic field 
with adiabatically increased or decreased frequency, respectively. The mechanism in our case is also 
different from that based on the periodic longitudinal modulation on the coupling coefficient between 
neighboring waveguides through curved waveguide arrays59.

We would emphasize that the adiabatic optical transition shown in Fig.  3 is different from that 
achieved through Rabi oscillation reported in refs 20,21. Although both of them are driven by the lon-
gitudinal periodic modulation along the propagation z direction, the period of longitudinal modulation 
varies linearly and adiabatically along the propagation z direction in our case while it is kept to be the 
same in the Rabi oscillation case. In addition, two specific FB modes in different bands with different 
field distribution are involved in the Rabi oscillation, and the band structure of the lattice is invariant 
along the propagation dimension. While for our case, adiabatic mode transition occurs across the res-
onance point via band structure evolution and the two FB modes at the resonant point in two bands 
are of the same field distribution, as shown in Fig.  2(c–f). Note that the adiabatic optical transition is 
achieved by adiabatically scanning the longitudinal modulation period and the two involved FB modes 
are of the same field distribution, therefore it is always perfect with a 100%-conversion efficiency in our 
case. In contrast, the optical transition via Rabi oscillation is based on the parametric mixing between 
the FB modes from different bands, and the conversion efficiency may be relatively low, depending on 
the interacting bands20,21.

The resonant transition point is specially interesting (see the point R marked in Fig. 1(c)). Such res-
onant transition points have been extensively studied in quantum system driven by a temporally periodic 
field, many novel effects such as driven quantum tunneling and coherent destruction of tunneling have 
been observed26,36,41. For the longitudinally modulated photonic lattices here, besides the adiabatic opti-
cal transition between FB modes in different bands, one can also achieve effective negative refraction 
near this special resonant transition point because of the smooth connection between different FB bands 
at the resonant point. From the reduced band structure shown in Fig. 1(c), one sees that the FB modes 
of band 1 and band 2 in Fig. 1(c) with a resonant transverse wavevector kx

0 propagate in the same direc-
tion in the longitudinally modulated photonic lattice, leading to an effective negative refraction phenom-
enon, as shown in Fig. 5. The seemly fringe pattern along the beam propagation path in the modulated 
lattice is a discrete characteristic of the lattice, which occurs in all transversely modulated lattices2,6,40. 
Note that the observed negative refraction effect is determined by the band structure of the longitudinally 
modulated lattice, therefore, it occurs when the transverse wave vector kx of the exciting beam is matched, 
no matter the longitudinal modulation at the interface is switched on smoothly or abruptly. It can be 
numerically confirmed that a slight deviation of the incidence beam from the resonant point within 
Δ kx <  0.1π/D is acceptable for the observation of negative refraction. This is very different from that in 
a photonic lattice without longitudinal modulation, where the excited two FB modes in two different 
bands will propagate in different directions1,40,60.

In conclusion, based on the concept of quasi-energy and the Floquet-Bloch theory, we have suc-
ceeded in getting the accurate band structures of longitudinally modulated photonic lattices in which the 
perturbation approximation of the coupled-mode theory may not be applicable. Band discontinuity is 
observed due to the avoiding crossing effect at the resonant transverse wave vectors, where, on the other 
hand, different FB bands happened to be smoothly connected in the reduced band diagram, leading to 
interesting effects such as negative refraction at these resonant points. More interestingly, by adiabatically 
varying the longitudinal modulation period along the propagation direction, adiabatic optical transition 
between FB modes from different bands can be achieved with a perfect conversion efficiency, which can 
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be used to bend the light propagation trajectory in the lattices, and designable snake-like beam propa-
gation is achieved. This may have potential applications in beam steering, navigating and even cloaking.

Methods
Orthogonal basis φe x( )iqωz

n k
0
, x

.  The state φ ( ), xn k
0

x
 in Eq. (5) is the eigenstate of the unperturbed Eq. 

(3) (i.e., V(x, z) =  0) with the corresponding eigenvalue β ( )kn x
0 . In order to compare with the band 

structure of lattices without longitudinal refractive index modulation, we employ the conventional band 
index scheme with positive index number (n =  1, 2, 3,...) in the reduced band-gap diagram for photonic 
lattices40,61, and the eigenstate is in the form

φ ( ) =
( )

π

,

( − )
x

D
e1

8n k
i

n x
D0
1

x

with 
( )

β ( ) = −
+ π( − )

kn x

k

k
0

2

x
n

D
1 2

 when n =  1, 3, 5... is an odd integer, and

φ ( ) =
( )

π

,
−x

D
e1

9n k
i n x

D0
x

with ( )
β ( ) = −

− π

kn x
k

k
0

2
x

n
D

2

 when n =  2, 4, 6... is an even integer.
Let φ, , = ( )ω

,x z k n q e x;x
iq z

n k
0

x
. It is evident that the orthogonal basis satisfies36

∫ ∫ φ φ δ δ′, ′ , = ( ) ( ) =
( )

ω

− /

/
( − ′)

− /

/

′, , , ′ , ′
⁎k n q k n q

T
dze dx x x; ; 1

10x x
T

T
i q q z

D

D

n k n k n n q q
2

2

2

2
0 0

x x

Calculation of Matrix Element Mn,n′;q,q′.  The matrix element Mn,n′;q,q′ of the Hamiltonian H kx
 can 

be expressed as

= ′, ′ ( , ) , . ( ), ′ , ′M k n q H x z k n q; ; 11n n q q x k x; x

By taking the orthonormality of the eigenstate ,k n q;x  into consideration and with an optical potential 
ω ω( , ) = ( ) ( )δV x z x zcos cosk n

n x
0

, one arrives at

∫ ∫

β ω δ δ

δ
ω φ ω φ

= ( ( ) − )

+ ( ) ( ) ( ) ( ).
( )

ω ω

, ′ , ′ , ′ , ′

− /

/
− ′

− /

/

′, ,
⁎

M k q

k n
n T

dze z e dx x x x1 cos cos
12

n n q q n x n n q q

T

T
iq z iq z

D

D

n k x n k

;
0

0 2

2

2

2
0 0

x x

Here

Figure 5.  Effective negative refraction at the resonant transition point kx
0 at the entrance surface 

(indicated by the white horizontal line) for a light beam incident from the homogeneous media with a 
refractive index n0 to the longitudinally modulated photonic lattice with T = 1300 μm. The incident 
wavelength is set at 0.6328 μm, and the lattice parameters are the same as those in Fig. 1(c).
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∫ ( )ω δ δ( ) = + ,ω ω

− /

/
− ′

, ′+ , ′−T
dze z e1 cos 1

2T

T
iq z iq z

q q q q
2

2

1 1

and

∫ φ ω φ δ δ δ δ( ) ( ) ( ) = ( + + + ).
− /

/

′, , , ′− , ′+ = , ′= = , ′=
⁎dx x x xcos 1

2D

D

n k x n k n n n n n n n n
2

2
0 0

2 2 1 2 2 1x x

Therefore, one can get the matrix element

( )β δ δ
δ
δ δ δ δ δ δ= ( ) + + ( + + + ), ′ , ′ , , ′ , ′ , ′+ , ′− , ′− , ′+ = , ′= = , ′=M k k n

n4n n q q n q x n n q q q q q q n n n n n n n n;
0

0
1 1 2 2 1 2 2 1

with β β ω( ) = ( ) −, k k qn q x n x
0 0 .

BPM.  The beam propagation trajectories in the lattices shown in Figs  3(b),4 and 5 are simulated by 
employing the beam propagation method (BPM).
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