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Minimal evolution time and 
quantum speed limit of non-
Markovian open systems
Xiangyi Meng1,2,3,4, Chengjun Wu1,2,3 & Hong Guo1,2,3

We derive a sharp bound as the quantum speed limit (QSL) for the minimal evolution time of 
quantum open systems in the non-Markovian strong-coupling regime with initial mixed states 
by considering the effects of both renormalized Hamiltonian and dissipator. For a non-Markovian 
quantum open system, the possible evolution time between two arbitrary states is not unique, 
among the set of which we find that the minimal one and its QSL can decrease more steeply by 
adjusting the coupling strength of the dissipator, which thus provides potential improvements of 
efficiency in many quantum physics and quantum information areas.

As a fundamental bound for the evolution time of quantum systems, the quantum speed limit (QSL) 
(also referred to as quantum evolution time limit) plays an important role in tremendous areas of quan-
tum physics and quantum information, such as quantum computation and communication1,2, quantum 
metrology3, cavity quantum electrodynamics4, quantum control5, etc. The derivation of QSL is most 
required for the purpose of simplification and/or optimization in theoretical analysis, since in most 
quantum-cases one only needs to derive a lower bound on the minimal time of evolution without solving 
the exact equation to see the dominant factors in evolution and/or optimize our demand. For closed 
quantum systems, two types of QSL have been derived at the start: the Mandelstam-Tamm (MT) bound 
τ π≥ /( ∆ )ħ E2 6 and the Margolus-Levitin (ML) bound τ π≥ /( )ħ E2 7. Since then, further investiga-
tions are launched into QSL8–12. As the energy of a closed system is conserved, the QSL of a closed system 
is decided by the variance of energy Δ E or the mean energy E , related only to the unitary Hamiltonian. 
Recently, the QSL for quantum open systems13 draws wide attention with several bounds14–18 being 
found. Because there is energy and/or coherence exchange between system and environment for quan-
tum open systems, the evolution generator therein contains not only a time-dependent Hamiltonian Ht 
but also a dissipator ρ( )Dt t  (a trace-preserving term referring to dissipation behaviors)13. In quantum 
open systems, non-Markovianity is valuable in practice and highly emphasized for its particular charac-
teristics of memory effect, negative energy/population flow and singularity of the state evolution19,20. The 
latter two characteristics are commonly found in the strong-coupling regime, where the system and 
environment are strongly coupled and the non-Markovianity becomes a non-negligible strong effect21. 
Typically, a strong-coupling regime can be achieved and temporarily maintained in high-Q optical 
micro-cavities22 and quantum circuits23. In spite of recent breakthrough on measurement methods for 
non-Markovianity24–28, the strong-coupling regime still remains as an open question. Also, QSL issue 
becomes more complicated than it was considered16, since in such a regime the possible evolution time 
between two arbitrary states is not unique, while only the QSL for the minimal one does matter. In 
addition to non-Markovianity, the evolution of mixed states in quantum open systems also attracts 
concern. It is therefore of great significance to derive a sharp bound on evolution time for general con-
ditions, i.e., for mixed states in different non-Markovian coupling regimes.
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In this report, we study the non-Markovian problem by using geometric methods and derive a sharp 
bound for the minimal evolution time for quantum open systems with initial mixed states. We define the 
minimal evolution time τ̂ for non-Markovian quantum open systems as the minimal possible evolution 
time between two arbitrary states before we study its relevant QSL using new mathematical inequality 
tools. A steeper decrease of QSL than previous result16 caused by strong non-Markovianity is observed 
in the examples of two-level models, indicating that a much smaller evolution time can be achieved in 
the strong-coupling regime. It is implied that the evolution of quantum physical process and computation 
involving strong-coupling interactions can be more effective.

Results
Geometric fidelity.  To quantify the geometric distance between two general quantum states, the 
Bures fidelity29 ρ ρ ρ ρ( , ) = ‖ ‖FB 1 2 1 2 tr

 with the Bures angle Θ = − FcosB B
1  was usually used, 

where ρ is the density operator of a general quantum state. Here, however, we introduce the relative-pu-
rity fidelity ρ ρ ρ ρ ρ( , ) = /‖ ‖ ‖FR 1 2 1 2 HS 2 HS

 with Θ = − FcosR R
1 . This one derived from the 

so-called relative purity30 is more useful in studying QSL31. It is easy to prove that ρ ρ ρ ρ( , ) = ( , ) =F F 1B R , 
and, if ρ2 is a pure state, then one has ρ ρ ρ ρ( , ) = ( , )F FB R1 2 1 2 .

From the von Neumann trace inequality32,
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Hence, we have ρ ρ≤ ( , ) ≤F0 1R 1 2  and Θ = − FcosR R
1  is valid. In addition, compared with 

another recently used fidelity18 ρ ρ ρ ρ ρ ρ′( , ) = / ⋅‖ ‖ ‖F 1 2 1 2 HS 1 HS 2 HS
, ρ ρ( , )FR 1 2  can guar-

antee a perfect and simple linear relationship (as we shall see later) at the expense of good symmetry 
between ρ1 and ρ2.

Minimal evolution time.  The minimal evolution time τ̂ of a quantum evolution is defined in the 
following: given a predefined quantum evolution ρ ρ= ( ) Lt t t , then, a predetermined state ρτ, one has 

τ τ τ= ∈ˆ min{ }, where  stands for the set of all the actual possible driving time τ that the evolution 
from ρ0 to ρτ may take. One should notice that τ is not unique, especially in the non-Markovian 
strong-coupling regime.

Quantum speed limit.  In order to derive a lower bound as the QSL for driving time τ, the square 
of the relative-purity fidelity
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is used, which is simply linear with ρt. The same linear relationship for ρ ρ( , )F[ ]B t 0
2 is not true unless 

ρ0 is a pure state. Taking time derivatives of Θ = − FcosR R
1  yields
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The dynamical map of a general quantum system reads ρ ρ ρ( ) = (− / ) , + ( )ħL Di H[ ]t t t t t t
13, where 

the renormalized Hamiltonian = +H H Ht t
LS

0  contains a time-dependent Lamb shift term Ht
LS. For a 

Markovian system, the super-operator L takes a Lindblad form and is time-independent, hence 
ρ ρ ρ ρ| ( ) | = | ( ) |†L LTr{ } Tr{ }t t0 0 , where †L  obeys the adjoint master equation15. However, this is 

invalid for a non-Markovian system13. To derive the lower bound for a non-Markovian case, we divide 
Lt into two parts using the triangle inequality

ρ ρ ρ ρ ρ ρ| ( ) | ≤ | , | + | ( ) |.
ħ

L DHTr{ } 1 Tr{[ ] } Tr{ }t t t t t t0 0 0

The absolute trace inequality32 reads σ σ σ σ≤ ∑ , ∑ABTr{ } min{ }A
i i

B B
i i

A
1 1 . Since ρ =10 tr

, one has
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ρ ρ ρΘ Θ ≤ , + ( ) . ( )


ħ
DHsin2 1 [ ] 1R R t t t t0 HS op op

As Ht and ρt are both positive (by shifting the ground energy of Ht) and Hermitian operators, we take 
the commutator inequality33, i.e., σ σ σ σ− ≤ ( − )( − )/AB BA 2A

N
A B

N
B

op 1 1 , where σ σ= min{ }N i  and 
N is the rank of the operator. For convenience, we denote σ σ− = ∆AA

N
A

1 . It is worth noting that this 

inequality is sharp, e.g., if ( )=A 2 0
0 1

 and =





/ /
/ /






B
1 2 1 2
1 2 1 2

, then = =∆ ∆A B 1 and 

− = /AB BA 1 2op . Since ρ ≤
∆

1t , for simplicity we have  ρ ρ− ≤ /∆H H H 2t t t t top
. Substituting 

it into Eq. (1) and integrating t from 0 to τ then yield

τ
ρ

ρ
≥
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+ ( )
,

( )τ τ
∆ħ DH

sin

2
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t t t

0 HS
2

1
2 op

where ∫τ=τ
τ−A Adt1

0
. It is manifested that Eq.  (2) is determined by both the renormalized 

Hamiltonian Ht (system) and the dissipator ρ( )Dt t  (environment). Also, this bound can reduce to the 
previous result16 when ρ0 is a pure state and ≡H 0t .

Non-Markovianity.  To investigate the minimal evolution time τ̂ in more detail, we use the damped 
Jaynes-Cummings model as an example, which describes the coupling between a two-level system and a 
single cavity mode with the background of cavity-QED13. Within a resonant Lorentzian spectral density 
of environment that ω π γ λ ω ω λ( ) = ( ) / ( − ) +−J 2 [ ]1

0
2

0
2 2 , the exact Hamiltonians read13

ω σ σ= , = ,+ −ħH H 0t
LS

0 0

where ħω0 is the energy difference and ( )σ σ σ= ± /± i 2x y  are Pauli operators. The exact dissipator 
reads

ρ γ σ ρ σ σ σ ρ( ) = ( )( − , ),− + + −D t 1
2

{ }t t t t

with γ γ λ λ( ) = ( / ) ( / )/ + ( / ) ( / )t D Dt D Dt2 tan 2 [1 tan 2 ]0 , in which λ is the spectral width, γ0 the cou-
pling strength, and γ λ λ= −D 2 0

2. When γ0 <  λ/2, the system and environment are weakly coupled 
and evolve subexponentially; the degree of non-Markovianity =N 024. When γ0 >  λ/2, D is real; the 
system and environment are strongly coupled with oscillatory characteristics13 and >N 0 (see Fig. 2). 
The initial environment is chosen to be a vacuum state and the initial system ( )ρ = 1 0

0 00
 fully excited 

to make the model simpler. Consequently, we only need to consider the dissipator ρ( )Dt t , for the exact 
solution13 implies ρt a diagonal operator so that ρ, ≡H[ ] 0t t  in Eq. (1). It is useful to introduce a special 
minimal evolution time τ τ=ˆ ˆmax{ }M , ∀ , i.e., τ̂M is the minimal evolution time for the maximum of 

Figure 1.  Solutions of the population of the damped Jaynes-Cummings model13 in the weak- (black line) 
and strong-coupling regime (red line), with γ0 = 0.4 and γ0 = 10, respectively, and λ = 1 for both. τ̂M is 
when the maximum of geometric distance is reached (ρ τ( )=ˆ 0M11 ).
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Θ R. It is worth noting that τ̂M depends strongly on different coupling regimes (see Fig.  1): in the 
weak-coupling regime, we have τ → ∞ˆ M , but in the strong-coupling case, τ̂M is finite, which is caused 
by the oscillatory characteristics of the population. Like τ̂M, it is worth noting for τ̂ itself that it will be 
smaller in the strong-coupling regime than that in the weak-coupling regime16. Although τ̂ is equal to 
the only possible driving time τ ∈  when it is weakly coupled, it is not the case for the strong-coupling 
regime. From numerical solution of τ̂ we find that τ̂ has a first derivative singular point at γ λ≈ /20  and 
a steep decrease in the strong-coupling regime, which cannot be implied from N (see Fig. 2). A decrease 
of the QSL for τ̂ was also suggested in the previous result16, but the decreasing slope with γ0 deviates 
from the minimal evolution time as shown in Fig. 2.

As the energy of an open system is not conserved, the average of the dissipator ρ( )Dt t  decreases with 
time and ρ〈 ( ) 〉 =∞D 0t t op

; as a result, we have ρ ρ〈 ( ) 〉 ≤ 〈 ( ) 〉τ τ̂D Dt t t top op
 since τ τ≥ ˆ . τ̂ 

depends on the short duration from 0 to τ̂M at most, so we can simply replace the time average by the 
maximum and eliminate the subscript τ̂,

ρ ρ〈 ( ) 〉 ≤ ( ) . ( )τ̂D D{ }max 3t t t top op

Substituting Eq. (3) into Eq. (2), the final bound for τ̂ yields

τ
ρ

ρ
≥

Θ

〈 〉 + ( )
,
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ħ ˆ
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t t t
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2

1
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which is valid for general quantum systems, regardless of whether they are closed or open and how 
strong the coupling is. It is found that the QSL Eq. (4) in the strong-coupling regime has a fitting decreas-
ing slope as shown in Fig.  2. However, this bound is not asymptotic when γ λ/ → ∞0 . To derive a 
sharper QSL, we notice that Eq. (3) can take an approximation,

ρ β ρ〈 ( ) 〉 ≈ ( ) ,
( )τ̂

D Dmax{ } 5t t t top op

where the parameter β introduced as a metric of the time average rests upon specific models, and the 
rough bound of Eq. (3) can also be treated as β =  1. For this case, we consider that in the strong-coupling 
regime when λ/ →D 0,
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The first-order approximation yields γ ( ) ≈ ( / )t D Dttan 2 , since γ λ ≈ D2 0
2. The exact solution of 

ρ ρ= ( ) Dt t t  yields  ( )∫ρ ρ( ) = 

 ′ 


← ′D D T Dexp dtt t t

t
t0 0

. Here ←T  is the chronological super-operator 

which orders the t′  arguments to increase from right to left34. Hence,

Figure 2.  Minimal evolution time (red solid line) of the same model and its different QSL bounds (black 
lines) as a function of γ0. The bounds are derived from the previous result16 (dotted), Eq. (4) (solid), and 
Eq. (5) (dashed). Also indicated here is the degree of non-Markovianity24 (blue solid line). We set λ =  1 and 
τ =  10.
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ρ ρ( ) ≈ ( ) ( ) , ( )D D Dtmax{ } sin 6t t t top op

where ρ( ) ≈ /D Dmax{ } 2t t op
. Generally speaking, for a continuous evolution, strong coupling 

between the system and environment certainly involves a non-Markovian bidirectional flow of energy 
and/or coherence, which can always be characterized as oscillator(s). Therefore, a general form like 
Eq. (6) can provide a reasonable approximation of oscillation for other models.

It is found that the parameter β depends typically on the relation between τ̂ and τ̂M in the 
strong-coupling limit. With different τ τ/ˆ ˆ M (when γ λ/ → ∞0 ), the time average in the left term of 
Eq. (5) will take a different time period, and β thus changes in the range from 0 to 1. In this case of the 
damped Jaynes-Cummings model, we have τ τ/ →ˆ ˆ 1M  as γ λ/ → ∞0 , suggesting that the time average 
in Eq. (5) should take nearly a π/2 period. Taking Eq. (6) into Eq. (5) immediately indicates β =  2/π then. 
From Fig. 2, it is clear that this bound is sharp, but is not valid when it comes into the weak-coupling 
regime since the approximation γ ( ) ≈ ( / )t D Dttan 2  is invalid there.

Renormalized Hamiltonian.  To verify our result and manifest the influence of the renormalized 
Hamiltonian term in Eq. (2), we introduce another two-level system containing a two-band environment 
as the second example. This model can simulate the interaction between a spin and a single- 
particle quantum dot35,36, of which the total Hamiltonian is H =  H0 +  V where σ= ∆ +H E z0  
δε δε∑ ( / ) + ∑ (∆ + / )N n n n E N n n nn n1 1 1 1 2 2 2 21 2  with σz the Pauli operator. The lower energy 

band contains N1 levels and the upper N2 levels, with the same band width δε and the inter-bands dis-
tance Δ E in resonance with the spin. V represents the interaction that λ= ∑ ,V cn n1 2

 
σ( , ) + . .+n n n n h c1 2 1 2 , with λ the coupling coefficient and c(n1, n2) complex Gaussian random vari-

ables. At the beginning, we numerically solve the model concerning the minimal evolution time problem 
and identify the same singularity at λ ≈  0.0072 and steep decrease when λ >  0.0072 like those shown in 
Fig.  2. To demonstrate the influence of renormalized Hamiltonian, first we set 

( )ρ ρ( ⊗ ) = ⊗ n n1 0
0 0E 0 1 1  with a driving time τ =  8.0, from which one derives Θ R ≈  0.7707 and 

τ ≈ .ˆ 2 0 (see Fig.  3(a,b)). As ρ =





/
/




∞

1 2 0
0 1 2

, τ τ/ˆ ˆ M  1 now35. It is recalculated from Eq.  (5) that 

β π π≈ − ( / ) /( / ) ≈ .[1 cos 3 4 ] 3 4 0 72. Further calculation shows that the previous QSL16 τ = .ˆ 5 1757o
QSL  

is too large, while Eqs.  (3) and (5) indicate τ = .β=ˆ 1 44211
QSL  and τ = .β= .ˆ 1 99050 72

QSL . Both of them stay 

valid while the latter is sharp. Second, we set Δ E =  10ħ, ρ ρ( ⊗ ) =





/ /
/ /





⊗ n n

1 2 1 2
1 2 1 2E 0 1 1  and τ =  8.0, 

from which one derives Θ R ≈  0.7832 and τ ≈ .ˆ 0 2 (see Fig. 3(c,d)). Since ρ0 is not diagonal, ρ, ≠H[ ] 0t t  
and 

τ∆Ht  should be considered. Further calculation shows that the previous QSL16 τ = .ˆ 1 0242o
QSL  

is too large, while τ = .β=ˆ 0 11301
QSL  and τ = .β= .ˆ 0 11960 72

QSL . The mere difference between τβ=ˆ 1
QSL and τβ= .ˆ 0 72

QSL  
implies that the renormalized Hamiltonian Ht is dominant in Eq. (4). As 〈 〉

τ∆
Ht  added, τ̂QSL becomes 

smaller, which apparently follows the time-energy uncertainty relation.

Discussion
Only Hamiltonian was considered in some of previous investigations6–12, while for an open system, the 
coupling strength of its dissipator also has an influence on QSL15,16. However, it is demonstrated in our 
study that in non-Markovian case such influence could be more significant than it was thought. Therefore, 
to achieve a high speed of evolution5, it is more probable that we only focus on improving the coupling 
interaction instead of increasing the energy. This implies that the power consumption can stay a low level 
for cavity-QED process while high efficiency can still be achieved. Previously it was always thought that a 
strong coupling with environment should be prevented due to its enhanced decoherence effect on qubits. 
However, as a trade-off, the operation time for transforming and/or erasing qubits for example can also 
be remarkably reduced in the strong-coupling regime. It is thus possible to make quantum computation 
more feasible and achievable by adjusting the coupling strength in a well-chosen pattern.

In summary, we derive a sharp bound as the quantum speed limit of open systems available for mixed 
initial states. Considering the non-Markovian feature, we find that the minimal evolution time of the 
two two-level examples considered here has singularity nearly at the cross-point of regimes and a steep 
decrease in the strong-coupling regime. This result may lead to high-efficiency quantum information 
research and engineering. As the time-energy uncertainty relation dictates, renormalized Hamiltonian 
will also contribute to the final quantum speed limit bound as manifested in the quantum dot model 
in detail. We expect our result to be used for quantum time analysis and optimal control, as well as in 
pertinent topics on general physics.



www.nature.com/scientificreports/

6Scientific Reports | 5:16357 | DOI: 10.1038/srep16357

Methods
Norms of operators.  A general Schatten p-norm of an operator A is σ= (∑ )

/A p i i
p p1 , where singu-

lar values σ σ σ≥ ≥ … ≥ ≥ … ≥ 0i1 2  are the eigenvalues of = †A A A , and σ= =→∞A A pop 1, 
= =A A ptr 1 and = =A A pHS 2 as the operator norm, trace norm and Hilbert-Schmidt norm of A, 

respectively37.

Approximation for the dissipator D‖ ‖ρ( )t t op
 of the damped Jaynes-Cummings model in the 

strong-coupling regime.  With

ρ γ σ ρ σ σ σ ρ( ) = ( )


 − ,



− + + −D t 1

2
{ }t t t t

given13, the exact solution of ρ ρ= ( ) Dt t t  yields
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γ γ
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We have γ ( ) ≈ ( / )t D Dttan 2  in the strong-coupling regime. As a result,

∫
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Figure 3.  Numerical solution of the relative-purity fidelity (red lines) and the dissipator (blue lines)  
of the quantum dot model35. λ =  0.02 which represents the strong-coupling regime, with N1 =  N2 =  500 and 
δε =  0.5ħ. The initial states are (a), (b): ( )1 0

0 0
 and (c), (d): 




/ /
/ /






1 2 1 2
1 2 1 2

, respectively.
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which yields the result of Eq. (6). In this case, we also have τ τ→ˆ ˆ M as γ0 increases, which implies that 
the time average in Eq. (5) takes nearly a π/2 period. Taking Eq. (6) into Eq. (5) then indicates β =  2/π.
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