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Topological robustness analysis 
of protein interaction networks 
reveals key targets for overcoming 
chemotherapy resistance in glioma
Hátylas Azevedo & Carlos Alberto Moreira-Filho

Biological networks display high robustness against random failures but are vulnerable to 
targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool 
for investigating network susceptibility against targeted node removal. Here, we built protein 
interaction networks associated with chemoresistance to temozolomide, an alkylating agent used 
in glioma therapy, and analyzed their modular structure and robustness against intentional attack. 
These networks showed functional modules related to DNA repair, immunity, apoptosis, cell 
stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of 
centrality-based attacks based on the removal of node fractions in descending orders of degree, 
betweenness, or the product of degree and betweenness. This analysis revealed that removing 
nodes with high degree and high betweenness was more effective in altering networks’ robustness 
parameters, suggesting that their corresponding proteins may be particularly relevant to target 
temozolomide resistance. In silico data was used for validation and confirmed that central nodes 
are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and 
for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis 
of network vulnerability to topological attack facilitates target prioritization for overcoming cancer 
chemoresistance.

The recognition of state transitions in molecular networks due to environmental or endogenous factors 
holds the key for elucidating disease mechanisms at the network level1. Molecular networks, like gene or 
protein interaction networks, are usually complex, coordinately regulated and hierarchically organized. 
Thus, the examination of their topological dynamics after a change of state, such as disease progression or 
drug resistance, is fundamental for revealing underlying mechanisms and identifying therapeutic targets2.

The study of network topology and node hierarchy can be achieved by calculating centrality parame-
ters that determine the importance of each node in a network. The two most commonly used centrality 
parameters are node degree, which represents the number of direct links a node has, and between-
ness, that is the fraction of shortest paths between all pairs of nodes passing through a specific node3. 
The analysis of centrality parameters revealed emergent properties in biological networks, such as their 
organization into functional modules (also called clusters or communities) and their scale-free topology, 
i.e. their node degree distribution follows a power-law decay4. This last one indicates that most nodes 
interact with only a few nodes in the network while some nodes exhibit a high number of connections. 
Highly connected nodes are called hubs and they tend to be essential in protein interaction networks5, 
highlighting the importance of hierarchy for the functioning of molecular pathways. Indeed, the anal-
ysis of modules6 and topologically relevant nodes7 is capable of predicting key regulatory proteins in 
disease-specific networks.
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The topological analysis of scale-free networks demonstrated their high degree of tolerance against 
network fragmentation after random failures8. In contrast, these networks are notably vulnerable to the 
removal of hubs8. Hence, the study of network vulnerability against targeted attack provides an elegant 
strategy for investigating how these networks are sensitive to the removal of selected nodes representing 
genes or proteins. An interesting application of this concept lies in cancer drug resistance, considering 
that cancer cells contain robust biological networks that are resistant to drugs with narrow mechanisms 
of action9. In fact, the study of the topology of molecular networks has already revealed mechanis-
tic insights associated with chemotherapy resistance in cancer10–12. This data consequently support a 
multi-target approach to overcome drug resistance, in which rational therapeutic combinations can be 
computationally tested in terms of their effects on network parameters.

Particularly for gliomas, primary malignant brain tumors with poor survival rates, the acquired resist-
ance to the alkylating agent temozolomide (TMZ) remains a major challenge limiting its clinical effi-
cacy13,14. In this field, there is also a paucity of information about the molecular mechanisms underlying 
TMZ resistance. Thus, we analyzed here the topological features of protein interaction networks linked 
to TMZ resistance and their resilience against targeted attack in order to reveal key targets for over-
coming drug resistance in glioma. These targets were validated in silico using proliferation data from 
temozolomide-resistant glioma cells and co-occurrence relationships between gene expression levels and 
the prognosis of glioma patients.

Results
Network modules participate of biological functions and pathways associated to temozolo-
mide resistance.  We utilized network modeling to visualize the interactions between molecules pre-
viously associated with glioma resistance to temozolomide (TMZ). With this aim, protein interaction 
networks were built using molecular information derived from prior studies performed with TMZ-
resistant glioma cell lines and human glioma samples. The workflow used for data mining, integration 
and analysis is described in details in the Material and Methods section.

Table 1 displays the studies used in this work that investigated the molecular basis of TMZ resistance 
in glioma. Proteins associated with TMZ resistance were compiled (see supplementary Table S1) and 
utilized as seed nodes to reveal protein interactions and functional modules in the networks. We built 
two networks, one using information from GeneMania15, a Cytoscape plugin that stores protein interac-
tions from different sources, and another using data from the Human Signaling (HS) network16, which 
is a manually curated database containing information of physical interactions between proteins. These 
two networks are named hereafter GeneMania network and HS network, respectively. The descriptive 
parameters for the networks are shown in Table 2. Interestingly, these results confirmed the power law 
distribution (R2 =  0.913 and R2 =  0.846, respectively) of the node degree values in the TMZ resistance 
networks, which is concordant with their scale-free topology.

After network construction, groups of densely interconnected nodes (modules) were identified by 
calculating the clustering coefficient for each node in order to quantify modularity. This parameter esti-
mates the number of links connecting the neighbors of a given node. The more connections a node has 
with its neighbors, the more its clustering coefficient increases. Then, proteins belonging to each one of 
these modules were functionally enriched to reveal which biological functions are overrepresented by 
the clustered nodes.

Using the above approach, we identified functional modules in the GeneMania and HS networks. 
These subsets of connected proteins may be particularly relevant for TMZ resistance, as proteins belong-
ing to a given module may collectively participate of specific functions. The functional enrichment 
analysis of these modules showed their involvement in ribosomal functions, cell proliferation and sur-
vival, extracellular matrix functions, cell stress, DNA damage response, cell cycle regulation, cell pro-
liferation, migration, growth factor pathways, DNA repair, apoptosis and immune pathways. Moreover, 
these network modules were associated with pathways related to the growth factors NGF, PDGF and 
ErbB, interleukins IL-1, IL-2, IL-3, IL-5 and IL-6, as well as to other immunity-related pathways such as 
MAPK, TGF-β  and Toll-like receptors. These modules and their enriched functions are represented in  
Tables 3 and 4.

Topological robustness analysis reveals effective strategies for removing nodes in the 
temozolomide resistance networks.  In light of the relationship between modularity and centrality 
in protein interaction networks, we explored the concept of attacking central nodes in the TMZ resist-
ance networks to interfere with their functional modules. Node degree and betweenness were calculated 
for all nodes for identifying central nodes in the networks. The product of degree and betweenness (PDB) 
was also calculated to disclose nodes with both high degree and high betweenness. These measures were 
used following previous studies where such centrality parameters were assessed for the analysis of attack 
robustness in complex networks17–19. Moreover, while node degree is a purely local centrality measure, 
betweenness represents a global centrality measure that accounts for the shortest paths among all pairs 
of nodes. Consequently, using centrality measures from distinct natures is important for analyzing the 
heterogeneous structure of complex networks5.

The above-mentioned centrality values were calculated in the initial networks and used to prioritize 
the removal of nodes according to different attack strategies. We tested three centrality-based attack 
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Article Title Association Reference

Huang et al., 2014
The microarray gene profiling analysis of 
glioblastoma cancer cells reveals genes affected by 
FAK inhibitor Y15 and combination of Y15 and 
temozolomide

Expression level 55

Epple et al., 2013
Induction of the unfolded protein response drives 
enhanced metabolism and chemoresistance in glioma 
cells

Expression level 56

Bruyère et al., 2011 Temozolomide-induced modification of the CXC 
chemokine network in experimental gliomas Expression level 57

Cui et al., 2010
Decoupling of DNA damage response signaling from 
DNA damages underlies temozolomide resistance in 
glioblastoma cells.

Functional 58

Yoshino et al., 2010 Gene expression profiling predicts response to 
temozolomide in malignant gliomas. Expression level 59

Auger et al., 2006
Genetic alterations associated with acquired 
temozolomide resistance in SNB-19, a human glioma 
cell line

Expression level 60

Demuth et al., 2007
MAP-ing glioma invasion: mitogen-activated 
protein kinase 3 and p38 drive glioma invasion and 
progression and predict patient survival

Functional 61

Ye et al., 2013
Protective properties of radio-chemoresistant 
glioblastoma stem cell clones are associated with 
metabolic adaptation to reduced glucose dependence.

Expression level 62

Kumar et al., 2013
Temozolomide-modulated glioma proteome: role of 
interleukin-1 receptor-associated kinase-4 (IRAK4) 
in chemosensitivity.

Expression level 63

Happold et al., 2012 Distinct molecular mechanisms of acquired 
resistance to temozolomide in glioblastoma cells Expression level 64

Zhang et al., 2010
Acquired resistance to temozolomide in glioma 
cell lines: molecular mechanisms and potential 
translational applications.

Functional 65

Gimenez et al., 2012
Quantitative proteomic analysis and functional 
studies reveal that nucleophosmin is involved in 
cell death in glioblastoma cell line transfected with 
siRNA.

Expression level 66

Table 1.   Selected published studies assessing molecules linked to temozolomide resistance in gliomas.

strategies for prioritizing node removal. The attack schemes were based on the removal of nodes in 
the descending order of their centrality values. These strategies were classified as degree-based (nodes 
with the highest degree were removed first), betweenness-based (nodes with the highest betweenness 
were targeted first) and PDB-based (nodes with the highest products of degree times betweenness were 
removed first). We reasoned that top-ranked nodes according to these measures would be essential for 
maintaining the structure of the networks against targeted attack. Moreover, network robustness was 
evaluated by assessing how the structure of the networks changed while nodes were being deleted dur-
ing the removal procedures. The outcome after each round of removal was determined on network 
robustness by calculating the diameter (d), average shortest path length (a), average inverse path length 
(1/a), number of nodes or size (S), number of edges (e) and clustering coefficient (cc) in each resulting 
subgraph. These robustness parameters are commonly applied for studying network behavior during 
attack simulations17,18.

Figures 1 and 2 show the comparative performance analysis between the three attack strategies used 
for removing nodes in the GeneMania and HS networks. For all the removal procedures, the networks 
were almost totally disconnected after knocking out 20% of the most central nodes, thus indicating their 
susceptibility to intentional attack. Moreover, by analyzing the graphics in Figs 1A,B and 2A,B, one can 
conclude that the PDB-based strategy was more effective than the other ones, because the decrease in 
the largest subgraph size (S) or in the number of edges(e) was more pronounced after the removal of at 
least 15% of the nodes using this strategy.

The analysis of changes in network diameter (Figs 1C and 2C) and in the average shortest path length 
(Figs 1D,E and 2D,E) revealed that the degree-based strategy was more effective in decreasing the robust-
ness of the TMZ resistant networks. This occurred because the PDB-based strategy turned the networks 
smaller in an early stage due to its best performance for those two parameters. Interestingly, although 
the degree-based strategy reduced the average clustering coefficient after removing 2% of the top cen-
tral nodes (Figs 1F and 2F), this parameter did not change among the different strategies until 20% of 
the central nodes were removed. The lowest average clustering coefficient was observed after removing 
25% of the central nodes using the PDB-based strategy, corroborating the efficiency of this strategy for 
interfering with the modularity of the TMZ resistance networks. Interestingly, a higher variation was 
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Network parameters GeneMania Network HS Network

Number of nodes 485 287

Number of edges in the largest subgraph (e) 1725 917

Number of shortest paths 234,740 82,082

Largest connected subgraph size (S) 485 287

Diameter (d) 9 7

Average number of neighbors 7.113 6.390

Network density 0.015 0.022

Average shortest path length (a) 3.321 3.213

Network heterogeneity 1.380 1.376

Clustering coefficient 0.255 0.269

Network centralization 0.145 0.192

R2 value for power-law curve fitting of node 
degree distribution 0.913 0.846

Table 2.   Descriptive parameters for the molecular networks associated with temozolomide resistance in 
glioma.

Module Number of proteins Main enriched functions and pathways

1 97 MAPK signaling pathway, toll-like receptor cascade, 
autophagy, cellular senescence

2 84
apoptosis, DNA damage response, cytoplasmic 
ribosomal proteins, ATM signaling pathway, regulation 
of cell cycle progression, p53 pathway

3 94
amino acid metabolism, unfolded protein response, 
antigen processing and presentation, ubiquitin-
proteasome system

4 17 Mitotic G1-G2/M phases, centrosome maturation

5 8 detoxification of reactive oxygen species, cellular 
response to stress

6 112
focal adhesion, regulation of actin cytoskeleton, 
ECM-receptor interaction, cytokine-cytokine receptor 
interaction, NGF, PDGF, SCF-Kit, DAP12 and PI3K/
Akt pathways.

7 16 apoptosis

8 19 matrix metalloproteinases, Insulin-like growth factor 
uptake

9 15 TGF-β  receptor signaling pathway

10 9 cell cycle and mRNA processing

Table 3.   Main functions and pathways enriched in each moduleofthe GeneMania network.

found in the average clustering coefficient after removing 20–25% of the nodes using the degree- and 
PDB-based strategies. This observation indicates that broad changes in network modularity precede the 
decay in network resilience.

The examination of nodes with both high degree and betweenness identifies known and 
novel targets for overcoming glioma drug resistance.  Considering the above results, we further 
analyzed the nodes with both high degree and betweenness due to their higher relevance for maintaining 
the network structure and topological robustness. We decided to center our downstream analysis on the 
nodes from GeneMania network, considering that most nodes in the HS network were also present in 
GeneMania network, as displayed in the Venn diagram of Fig. 3A.

We plotted the degree and betweenness values for all nodes in GeneMania network to identify those 
ones with high values in both parameters (Fig.  3B). A good linear correlation was observed between 
degree and betweenness values for the nodes (r2 =  0.7581), highlighting the hierarchical organization of 
this network. Additionally, a significant part of these central nodes participate of the PI3K-Akt-mTOR 
and Ras-Raf-Erk pathways. These pathways were already associated with glioma malignancy and 
chemoresistance20 and thus represent promising targets for drug development in glioma21. These central 
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nodes are mainly distributed in the modules 1 and 6 of the TMZ resistance network, corresponding to 
the biggest clusters identified in the network.

Next, we determined the number of previous studies assessing the relationship between each node 
and the glioma or temozolomide words, with the aid of GenClip, a literature mining tool. We plotted 
these values against the degree or against the product of degree and betweenness for each node in order 
to detect central nodes less studied in glioma research to date (Figures 3C and 3D). These nodes were 
colored in orange in the graph and some examples are Jak1, Pik3ca, Mapk14, Rb1 and E2f1.

Nodes with high degree and betweenness are important for the viability of 
temozolomide-resistant glioma cells.  We analyzed in silico the potential of nodes with (i) high 
degree (HD), (ii) high betweenness (HB) and (iii) both high degree and high betweenness (HDB) for 
altering the viability profile of glioma cells. To achieve this goal, we used the data from the Project 
Achilles22, which contains a database of viability scores across a panel of cancer cell lines after small 
hairpin RNA (shRNA)-based depletionof target genes. These scores are the log2-based proliferation rates 
between cells treated with the representative shRNAs and control cells incubated with pooled shRNAs.

The in silico validation was focused on the proliferation data from the glioma cell lines T98G, A172, 
LN382, U21MG and U343. These cell lines were selected because they are resistant to TMZ treatment, 
according to previous data23–27. Interestingly, the comparison of the average log 2 fold changes in cell 
viability after silencing HD, HB and HDB proteins showed the statistically significant higher pro-death 
potential of these proteins compared to proteins in the low centrality groups. These results were found 
when nodes contained in GeneMania network and also analyzed by Project Achilles were separated into 
two groups: the first one with the top ten percent nodes in terms of centrality values, and the second one 
with the bottom ten percent nodes. These results are displayed in Fig. 4.

Proteins corresponding to central nodes in the TMZ resistance network exhibit a higher pre-
dictive value for glioma patient survival.  To support the relevance of nodes (i.e. proteins) with 
high degree and/or betweenness for glioma patients survival, we compared the absolute logarithmic ratio 
of the relative risks (hazard ratios =  HR) between groups of patients with high or low expression levels 
for each protein (ln (HR-high/HR-low), using data from the PrognoScan database28. These results con-
firmed that central nodes in the TMZ resistance networks are associated with a significant higher risk of 
patient survival or death when the top and bottom ten percent central nodes were selected for the high 
and low groups, respectively. These results are summarized in Fig. 5.

Discussion
The molecular mechanisms of therapeutic resistance have been extensively investigated in cancer research, 
which resulted in the addition of novel drugs to standard chemotherapies for overcoming cancer resist-
ance29. In this context, the analysis of molecular interaction profiles is an interesting approach for prior-
itizing novel mechanisms of drug combination in cancer30. Therefore, we explored here protein-protein 

Module
Number 

of proteins Main enriched functions and pathways

1 86

Cytokine-cytokine receptor interaction, melanoma, JAK-STAT 
signaling pathway, MAPK signaling pathway, TLR signaling 
pathway, apoptosis, glioma, ESC Pluripotency Pathways, IL-1 
pathway, senescence and autophagy, signaling by ERBB4, SCF-
KIT, ERBB2, FGFR andPDGF 

2 12 mRNA processing, Mitotic anaphase, negative regulation of the 
PI3K/AKT network

3 13
Tight junction, calcium signaling pathway, signaling pathways 
in glioblastoma, endothelin pathway, DNA damage response, 
calcitonin-like ligand receptors, negative regulation of the PI3K/
AKT network

4 33
Regulation of action cytoskeleton, adherens junctions, cell cycle, 
ATM signaling pathway, TP53 signaling pathway, DNA damage 
response, EPH-Ephrin signaling

5 55
ECM receptor interaction, focal adhesion, cell communication, 
WNT signaling pathway, IL6 and IL3 pathways, TGF-beta 
signaling pathway, negative regulation of MAPK cascade

6 15 Ribosome, NOD pathway, translation factors, caspase cascade 
in apoptosis

7 54 MAPK signaling pathway, apoptosis, cellular response to stress, 
toll-like receptor cascade, 

8 17 Notch signaling pathway, calcium signaling pathway, insulin 
signaling pathway

Table 4.   Main functions and pathways enriched in each module of the HS network.
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interaction networks associated to TMZ resistance in order to predict key targets for tackling glioma 
drug resistance.

Since cell signaling networks exhibit modular organization, we sought to identify network clusters 
with specific biological functions that could be involved in glioma resistance. The study of modular 
organization in cancer signaling networks has already demonstrated that network modularity is cor-
related with cancer patient survivability31. Moreover, proteins belonging to specific hallmarks of can-
cer32 tend to be enriched in particular network modules, and therefore complex processes in cancer 
cells may involve the participation of several modules. Consequently, the prediction of which hallmarks 
are predominantly activated in each tumor could be achieved by the identification of major modules 
obtained from genomics data33. Accordingly, we showed here that chemoresistance to TMZ, a DNA 
alkylating agent, may be attributed not only to a classical hallmark of genome instability, but also to other 
hallmarks of malignant glioma cells, such as sustained proliferation, cell survival and invasion. Indeed, 
central nodes in the TMZ resistance network participate of the PI3K-Akt-mTOR and Ras-Raf-Erk path-
ways, major downstream pathways activated by growth factors during glioma progression20,21. Moreover, 
the presence of immune-related modules in the TMZ resistance networks highlights the relevance of 
immune escape functions for glioma chemotherapy resistance34.

We also hypothesized that node hierarchy could influence the efficiency of a candidate target for over-
coming chemotherapy resistance35. The virtual node knock-out experiments performed here revealed 
that the PDB-based attack was more effective in interfering with network robustness and modularity, 
suggesting the TMZ resistance network is susceptible to the attack of nodes with high degree and high 
betweenness. This is because removing nodes that are hubs (high degree) and bottlenecks (high between-
ness) at the same time disconnects groups of nodes in the network, reducing the magnitude of the largest 
subgraph. The same does not occur when the attack strategy is based on removing nodes that are only 
hubs, as removing fractions of hubs increases the distance between nodes but they may remain con-
nected in a largest subgraph. Indeed, genes that are defined as hubs and bottlenecks are better correlated 
with essentiality in cancer networks36. These nodes are important because they have a large number of 
connections and participate at the major intersections between modules in networks37. Therefore, the 
attack of hub-bottlenecks, rather than hub-nonbottlenecks, disclosed the fragility of modular scale-free 
networks38.

We next evaluated in silico if knocking-down proteins corresponding to central nodes in the TMZ 
network could modify the viability of glioma cell lines. The decrease in cell proliferation observed 

Figure 1.  Robustness analysis of the GeneMania network against topological attack. GeneMania network 
was constructed using information from physical and pathway-related protein interactions contained in 
GeneMania. Centrality-based attack schemes were focused on the removal of nodes in the descending order 
of their centrality values. These strategies were classified as degree-based, betweenness-based and product 
of degree and betweenness-based. The following network robustness parameters were calculated after each 
round of removal: diameter (D), average shortest path length (A), average inverse path length (1/a), size (S), 
number of edges (E) and average clustering coefficient (cc) in each resulting subgraph.
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when central nodes are knocked down in temozolomide-resistant cell lines confirms the importance of 
these nodes for glioma cell viability. Indeed, the association between node centrality and cell viability 
is observed in different experimental models and nodes (i.e. proteins) that are more important for the 
survival of an organism are formally called essential39. Hence, the integration of molecular interaction 
profiles and cell viability data may help to validate the extent to which central nodes are essential for cell 
proliferation in several cancer cell lines.

We also investigated the survival predictive values of nodes displaying high or low centrality values 
using data from glioma patients. This comparison showed that high centrality nodes have a superior pre-
dictive value, confirming that network topological structure is related to cancer patient survival. Indeed, 
cancer cells exhibiting higher molecular network complexity are more refractory to therapy than those 
with less complex pathways40, corroborating the discovery of novel therapeutic targets through the pri-
oritization of nodes according to their centrality values.

The network topology analysis performed in this study revealed a set of central nodes associated 
to glioma malignancy, such as Map3k14, Mapk1, Actn4, Hspa5, Atf2, Rac1,E2f1, Shc1, Pik3ca, Akt1, 
Vim and Egr1. For example, Map3k14, Atf2, Rac1 and Egr1play a role in glioma proliferation and inva-
sion41–44. In parallel, the proteins encoded by Pik3ca, Akt1 and Actn4 are overexpressed in malignant gli-
omas and correlate with poor survival rates45,46. Finally, the inhibition of Mapk1 improves the efficacy of 
temozolomide in brain-implanted tumors47 while decreasing E2f1 expression reverses cisplatin resistance 
in glioblastoma cells48. All these proteins may represent interesting targets for testing drug combinations 
to sensitize glioma cells to temozolomide.

In conclusion, our results show how the topological robustness analysis of protein interaction net-
works may be helpful for identifying therapeutic targets in cancer. Such approach offers the opportunity 
to determine target combinations for experimental evaluation by exploring the synergistic effects of 
targeting multiple proteins on the robustness of drug resistance networks49. This analysis showed that 
investigating nodes with high degree and high betweenness could be an interesting approach for unrav-
eling chemotherapy resistance mechanisms and disclosing novel drug targets. The in silico validation of 
these findings confirmed the importance of central nodes for tumor cell viability and patient survival in 
glioma, supporting future studies on network topology features for prioritizing cancer targets.

Figure 2.  Robustness analysis of the HS network against topological attack. HS Network was constructed 
using protein interaction information from the Human signaling (HS) network database. Centrality-based 
attack schemes were focused on the removal of nodes in the descending order of their centrality values. 
These strategies were classified as degree-based, betweenness-based and product of degree and betweenness-
based. The following network robustness parameters were calculated after each round of removal: diameter 
(D), average shortest path length (A), average inverse path length (1/a), size (S), number of edges (E) and 
average clustering coefficient (cc) in each resulting subgraph.



www.nature.com/scientificreports/

8Scientific Reports | 5:16830 | DOI: 10.1038/srep16830

Materials and Methods
Search of genes and proteins related to TMZ resistance in the literature.  Data from prior 
studies performed with TMZ-resistant glioma cell lines and human glioma samples were searched on the 
database PubMed. We sought for studies describing molecules with functional or expression level associ-
ation to TMZ resistance in glioma. Functional association was determined when targeting a specific gene 
or protein led to an alteration in glioma cell viability in the presence of TMZ. Conversely, the expres-
sion level association was considered when a TMZ resistance phenotype was correlated with a specific  
gene/protein differential expression profile. This data was compiled and manually curated in order to 
use only the most relevant studies in the downstream analysis. Protein names from other species were 
converted to their human orthologs.

Construction of the protein interaction networks and identification of functional modules 
associated with TMZ resistance.  The curated dataset was used to build a protein interaction net-
work showing the connections between the molecules related to TMZ resistance. The Cytoscape plugin 
GeneMania15 and the Human signaling network database16 were employed to identify physical and path-
way interactions between the seed nodes. The descriptive parameters of the networks were calculated 
using the Cytoscape Plugin Network Analyzer50. After the networks were built, groups of densely inter-
connected nodes named clusters (modules) were identified using the Cytoscape plugin clusterMaker51, 
and the elements belonging to each one of these modules were functionally enriched to reveal overrep-
resented biological functions, using the online bioinformatics tool Enrichr52. The databases KEGG, Wiki 
pathways, Reactome, Biocarta and Gene Ontology were used for searching relevant enriched functions 
via Enrichr interface. Only functions with a p-value of less than 0.05 were considered in the analysis.

Figure 3.  The analysis of nodes with high degree and betweenness identifies known and novel targets 
for overcoming glioma drug resistance. (A) Venn diagram showing that most nodes contained in the HS 
network are also part of the GeneMania network. (B) Scatter plot of degree and betweenness values for all 
nodes to identify those ones with high relative values in both parameters. (C) Scatter plot of node degree 
values and published studies to identify central nodes less studied in glioma research. Nodes (proteins)less 
studied in glioma research that also exhibited a high degree were colored in green. Nodes well studied in 
glioma research were colored in eitherlight or dark purple, according to their low or high degree values, 
respectively, (D) Scatter plot of the product of degree and betweenness values and published studies for 
each node to identify central nodes less studied in glioma research. Nodes (proteins) less studied in glioma 
research that exhibited a high degree x betweenness were colored in orange. Nodes well studied in glioma 
research were colored in either royal or dark blue, according to their low or high degree x betweenness 
values, respectively,
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Topological Analysis of the TMZ resistance network.  Centrality parameters were obtained for 
all nodes in the networks using the Cytoscape plugin CentiScaPe53. The topological parameter degree 
accounts for the number of edges linked to a given node, while betweenness centrality represents the 
number of shortest paths passing through a specific node, among the total number of shortest paths in 
the network.

Network centrality-based attack strategies.  The paradigm between error tolerance and attack 
vulnerability is usually applied to evaluate the robustness of a scale-free network. In this sense, net-
work topology-based attack simulations were performed here to evaluate the vulnerability of the TMZ 
resistance network against targeted attack. Nodes were ranked according to their centrality values for 
prioritizing the node removal of highly scored network nodes. Centrality-based attacks were performed 
in the original network to determine the impact of orderly removing these nodes on network robustness 
parameters. The attack strategies were classified as degree-based (nodes with the highest degree were 
removed first), betweenness-based (nodes with the highest betweenness were targeted first) and product 
of degree and betweenness-based attacks (nodes with the highest products of degree times betweenness 
were removed first).

Robustness analysis of the network against topological attack.  The robustness of the networks 
associated with TMZ resistance was determined by calculating some robustness parameters after rounds 
of removal based on deleting fractions of five percent of the nodes at each removal time. The robustness 
parameters evaluated were: i) diameter; ii) size of the largest connected subgraph; iii) number of edges 
in the largest connected subgraph; iv) average geodesic path; and v) average inverse geodesic path. The 

Figure 4.  The knock-down of genes high degree and betweenness alter the viability of glioma cells. 
Comparison between the average log 2 fold changes in cell proliferation after silencing nodes with high 
or low centralities in temozolomide-resistant glioma cell lines. The viability scores were obtained from the 
Project Achilles, using information from the cell lines T98, A172, LN382, U21MG and U343. Nodes were 
divided in high and low degree groups (HD and LD), high and low betweenness (HB and LB) groups or 
high and low product of degree and betweenness (HDB and LDB) groups. The comparison groups were 
formed by separating the proteins into two equal groups (A–C), containing the top or bottom ten percent 
nodes according to the established centrality rankings. Statistical comparisons were performed between the 
groups with high and low degree, betweenness or product of degree and betweenness, using Student’s t tests 
with p <  0.05 as the significance threshold. The high centrality nodes (proteins) that exhibited a prominent 
change in cell proliferation when silenced were highlighted in red.
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calculation of these parameters was implemented using the Cytoscape Plugin Network Analyzer50 and 
only the largest subgraph in each round of removal was considered to calculate the above parameters.

Relationship between node centrality and novelty in glioma research.  The degree and between-
ness value for all nodes were plotted in scatter plots to identify nodes with high values in both centrality 
parameters. In addition, these scatter plots were constructed using either the degree or the product of 
degree and betweenness values (x coordinate) against the number of studies previously investigating the 
relationship between each node and glioma or temozolomide words (y coordinate), with the aid of the 
literature mining tool GenClip54. The scatter plots were built using the GraphPad Prism®  5.

Examination of the importance of central nodes for the proliferation of TMZ-resistant glioma 
cells.  The effects on cell viability of knocking down specific proteins were evaluated employing data 
from Project Achilles, using information from the temozolomide-resistant glioma cell lines T98, A172, 
LN382, U21MG and U343. The average log2-fold change in cell proliferation was calculated for each 
gene, using data from the corresponding cell lines. The differing role of central nodesfor the proliferative 
state of TMZ-resistant glioma cells was determined by comparing groups with high and low centrality 
values. The groups were formed by selecting the top and bottom ten percent proteins in terms of their 
centrality values. These ten percent highest and ten percent lowest-ranked proteins were identified in the 
initial network based on their degree, betweenness or product of degree and betweenness.

Figure 5.  Superior predictive value of proteins with high degree and betweenness for glioma patient 
survival. Comparison of the survival predictive values between nodes with high and low centralities. The 
relative hazard ratios were obtained from the Prognoscan database. The relative risk was determined as the 
relative hazard ratio between groups of patients with high or low expression levels of each protein (ln (HR-
high/HR-low). Nodes were divided in high and low degree groups (HD and LD), high and low betweenness 
(HB and LB) groups or high and low product of degree and betweenness (HDB and LDB) groups. The 
comparison groups were formed by separating the proteins into two equal groups (A–C) containing the top 
or bottom ten percent proteins, according to the established centrality rankings. Statistical comparisons were 
performed using the absolute relative risks between the groups of nodes with high and low degree, high and 
low betweenness or high and low product of degree and betweenness, using Student’s t tests with p <  0.05 as 
the significance threshold. The high centrality nodes (proteins) that exhibited a prominent predictive value 
for patient death or survival were highlighted in red.
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Analysis of the predictive value of central nodes for glioma patients’ survival.  Analogously 
to the analysis performed with the cell proliferation data from Project Acchiles, glioma patient survival 
data (Prognoscan database) was used to determine if higher centrality nodes would have a superior 
predictive value than lower centrality nodes in the TMZ resistance network. The absolute relative risks 
(hazard ratios =  HR) between groups of patients with high or low expression levels for each protein (ln 
(HR-high/HR-low) were obtained for each protein and only significant results (adjusted p value <  0.05) 
were used in the final analysis. The distinct predictive value of central proteins was assessed by com-
paring groups with high and low centrality nodes. These groups were formed by selecting the top and 
bottom ten percent proteins in terms of centrality values. These ten percent highest and ten percent 
lowest-ranked proteinswere identified in the initial network based on their degree, betweenness or prod-
uct of degree and betweenness.

Statistical analyses between the high and low centrality groups.  The statistical comparisons 
between the groups with high and low degree, betweenness or product of degree and betweenness were 
made using Student’s t tests with p <  0.05 as the significance threshold, using the GraphPad Prism®  5.
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