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Biological networks display high robustness against random failures but are vulnerable to

targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool

for investigating network susceptibility against targeted node removal. Here, we built protein
interaction networks associated with chemoresistance to temozolomide, an alkylating agent used
in glioma therapy, and analyzed their modular structure and robustness against intentional attack.
These networks showed functional modules related to DNA repair, immunity, apoptosis, cell
stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of
centrality-based attacks based on the removal of node fractions in descending orders of degree,
betweenness, or the product of degree and betweenness. This analysis revealed that removing
nodes with high degree and high betweenness was more effective in altering networks’ robustness
parameters, suggesting that their corresponding proteins may be particularly relevant to target
temozolomide resistance. In silico data was used for validation and confirmed that central nodes
are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and
for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis
of network vulnerability to topological attack facilitates target prioritization for overcoming cancer
chemoresistance.

The recognition of state transitions in molecular networks due to environmental or endogenous factors
holds the key for elucidating disease mechanisms at the network level'. Molecular networks, like gene or
protein interaction networks, are usually complex, coordinately regulated and hierarchically organized.
Thus, the examination of their topological dynamics after a change of state, such as disease progression or
drug resistance, is fundamental for revealing underlying mechanisms and identifying therapeutic targets®.

The study of network topology and node hierarchy can be achieved by calculating centrality parame-
ters that determine the importance of each node in a network. The two most commonly used centrality
parameters are node degree, which represents the number of direct links a node has, and between-
ness, that is the fraction of shortest paths between all pairs of nodes passing through a specific node>.
The analysis of centrality parameters revealed emergent properties in biological networks, such as their
organization into functional modules (also called clusters or communities) and their scale-free topology,
i.e. their node degree distribution follows a power-law decay*. This last one indicates that most nodes
interact with only a few nodes in the network while some nodes exhibit a high number of connections.
Highly connected nodes are called hubs and they tend to be essential in protein interaction networks®,
highlighting the importance of hierarchy for the functioning of molecular pathways. Indeed, the anal-
ysis of modules® and topologically relevant nodes” is capable of predicting key regulatory proteins in
disease-specific networks.
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The topological analysis of scale-free networks demonstrated their high degree of tolerance against
network fragmentation after random failures®. In contrast, these networks are notably vulnerable to the
removal of hubs®. Hence, the study of network vulnerability against targeted attack provides an elegant
strategy for investigating how these networks are sensitive to the removal of selected nodes representing
genes or proteins. An interesting application of this concept lies in cancer drug resistance, considering
that cancer cells contain robust biological networks that are resistant to drugs with narrow mechanisms
of action’. In fact, the study of the topology of molecular networks has already revealed mechanis-
tic insights associated with chemotherapy resistance in cancer'®'2. This data consequently support a
multi-target approach to overcome drug resistance, in which rational therapeutic combinations can be
computationally tested in terms of their effects on network parameters.

Particularly for gliomas, primary malignant brain tumors with poor survival rates, the acquired resist-
ance to the alkylating agent temozolomide (TMZ) remains a major challenge limiting its clinical effi-
cacy'>!. In this field, there is also a paucity of information about the molecular mechanisms underlying
TMZ resistance. Thus, we analyzed here the topological features of protein interaction networks linked
to TMZ resistance and their resilience against targeted attack in order to reveal key targets for over-
coming drug resistance in glioma. These targets were validated in silico using proliferation data from
temozolomide-resistant glioma cells and co-occurrence relationships between gene expression levels and
the prognosis of glioma patients.

Results

Network modules participate of biological functions and pathways associated to temozolo-
mide resistance. We utilized network modeling to visualize the interactions between molecules pre-
viously associated with glioma resistance to temozolomide (TMZ). With this aim, protein interaction
networks were built using molecular information derived from prior studies performed with TMZ-
resistant glioma cell lines and human glioma samples. The workflow used for data mining, integration
and analysis is described in details in the Material and Methods section.

Table 1 displays the studies used in this work that investigated the molecular basis of TMZ resistance
in glioma. Proteins associated with TMZ resistance were compiled (see supplementary Table S1) and
utilized as seed nodes to reveal protein interactions and functional modules in the networks. We built
two networks, one using information from GeneMania'®, a Cytoscape plugin that stores protein interac-
tions from different sources, and another using data from the Human Signaling (HS) network'®, which
is a manually curated database containing information of physical interactions between proteins. These
two networks are named hereafter GeneMania network and HS network, respectively. The descriptive
parameters for the networks are shown in Table 2. Interestingly, these results confirmed the power law
distribution (R>=0.913 and R*=0.846, respectively) of the node degree values in the TMZ resistance
networks, which is concordant with their scale-free topology.

After network construction, groups of densely interconnected nodes (modules) were identified by
calculating the clustering coeflicient for each node in order to quantify modularity. This parameter esti-
mates the number of links connecting the neighbors of a given node. The more connections a node has
with its neighbors, the more its clustering coefficient increases. Then, proteins belonging to each one of
these modules were functionally enriched to reveal which biological functions are overrepresented by
the clustered nodes.

Using the above approach, we identified functional modules in the GeneMania and HS networks.
These subsets of connected proteins may be particularly relevant for TMZ resistance, as proteins belong-
ing to a given module may collectively participate of specific functions. The functional enrichment
analysis of these modules showed their involvement in ribosomal functions, cell proliferation and sur-
vival, extracellular matrix functions, cell stress, DNA damage response, cell cycle regulation, cell pro-
liferation, migration, growth factor pathways, DNA repair, apoptosis and immune pathways. Moreover,
these network modules were associated with pathways related to the growth factors NGE, PDGF and
ErbB, interleukins IL-1, IL-2, IL-3, IL-5 and IL-6, as well as to other immunity-related pathways such as
MAPK, TGF-3 and Toll-like receptors. These modules and their enriched functions are represented in
Tables 3 and 4.

Topological robustness analysis reveals effective strategies for removing nodes in the
temozolomide resistance networks. In light of the relationship between modularity and centrality
in protein interaction networks, we explored the concept of attacking central nodes in the TMZ resist-
ance networks to interfere with their functional modules. Node degree and betweenness were calculated
for all nodes for identifying central nodes in the networks. The product of degree and betweenness (PDB)
was also calculated to disclose nodes with both high degree and high betweenness. These measures were
used following previous studies where such centrality parameters were assessed for the analysis of attack
robustness in complex networks'”-'°. Moreover, while node degree is a purely local centrality measure,
betweenness represents a global centrality measure that accounts for the shortest paths among all pairs
of nodes. Consequently, using centrality measures from distinct natures is important for analyzing the
heterogeneous structure of complex networks>.

The above-mentioned centrality values were calculated in the initial networks and used to prioritize
the removal of nodes according to different attack strategies. We tested three centrality-based attack

SCIENTIFIC REPORTS | 5:16830 | DOI: 10.1038/srep16830 2



www.nature.com/scientificreports/

Article Title Association Reference

The microarray gene profiling analysis of
glioblastoma cancer cells reveals genes affected by

Huang et al., 2014 FAK inhibitor Y15 and combination of Y15 and Expression level 55
temozolomide
Induction of the unfolded protein response drives

Epple et al., 2013 enhanced metabolism and chemoresistance in glioma | Expression level 56
cells

Bruyére ef al,, 2011 Temozolomide-induced modification of the CXC Expression level 57

chemokine network in experimental gliomas

Decoupling of DNA damage response signaling from
Cui et al., 2010 DNA damages underlies temozolomide resistance in Functional 58
glioblastoma cells.

Gene expression profiling predicts response to

Yoshino et al., 2010 3 - . Expression level 59
temozolomide in malignant gliomas.
Genetic alterations associated with acquired

Auger et al., 2006 temozolomide resistance in SNB-19, a human glioma | Expression level 60

cell line

MAP-ing glioma invasion: mitogen-activated
Demuth et al., 2007 | protein kinase 3 and p38 drive glioma invasion and Functional 61
progression and predict patient survival

Protective properties of radio-chemoresistant
Ye et al., 2013 glioblastoma stem cell clones are associated with Expression level 62
metabolic adaptation to reduced glucose dependence.

Temozolomide-modulated glioma proteome: role of
Kumar ef al., 2013 interleukin-1 receptor-associated kinase-4 (IRAK4) Expression level 63
in chemosensitivity.

Distinct molecular mechanisms of acquired

Happold et al., 2012 resistance to temozolomide in glioblastoma cells

Expression level 64

Acquired resistance to temozolomide in glioma
Zhang et al., 2010 cell lines: molecular mechanisms and potential Functional 65
translational applications.

Quantitative proteomic analysis and functional
studies reveal that nucleophosmin is involved in
cell death in glioblastoma cell line transfected with
siRNA.

Gimenez et al., 2012 Expression level 66

Table 1. Selected published studies assessing molecules linked to temozolomide resistance in gliomas.

strategies for prioritizing node removal. The attack schemes were based on the removal of nodes in
the descending order of their centrality values. These strategies were classified as degree-based (nodes
with the highest degree were removed first), betweenness-based (nodes with the highest betweenness
were targeted first) and PDB-based (nodes with the highest products of degree times betweenness were
removed first). We reasoned that top-ranked nodes according to these measures would be essential for
maintaining the structure of the networks against targeted attack. Moreover, network robustness was
evaluated by assessing how the structure of the networks changed while nodes were being deleted dur-
ing the removal procedures. The outcome after each round of removal was determined on network
robustness by calculating the diameter (d), average shortest path length (a), average inverse path length
(1/a), number of nodes or size (S), number of edges (e) and clustering coefficient (cc) in each resulting
subgraph. These robustness parameters are commonly applied for studying network behavior during
attack simulations!”18.

Figures 1 and 2 show the comparative performance analysis between the three attack strategies used
for removing nodes in the GeneMania and HS networks. For all the removal procedures, the networks
were almost totally disconnected after knocking out 20% of the most central nodes, thus indicating their
susceptibility to intentional attack. Moreover, by analyzing the graphics in Figs 1A,B and 2A,B, one can
conclude that the PDB-based strategy was more effective than the other ones, because the decrease in
the largest subgraph size (S) or in the number of edges(e) was more pronounced after the removal of at
least 15% of the nodes using this strategy.

The analysis of changes in network diameter (Figs 1C and 2C) and in the average shortest path length
(Figs 1D,E and 2D,E) revealed that the degree-based strategy was more effective in decreasing the robust-
ness of the TMZ resistant networks. This occurred because the PDB-based strategy turned the networks
smaller in an early stage due to its best performance for those two parameters. Interestingly, although
the degree-based strategy reduced the average clustering coefficient after removing 2% of the top cen-
tral nodes (Figs 1F and 2F), this parameter did not change among the different strategies until 20% of
the central nodes were removed. The lowest average clustering coefficient was observed after removing
25% of the central nodes using the PDB-based strategy, corroborating the efficiency of this strategy for
interfering with the modularity of the TMZ resistance networks. Interestingly, a higher variation was

SCIENTIFIC REPORTS | 5:16830 | DOI: 10.1038/srep16830 3



www.nature.com/scientificreports/

Number of nodes 485 287
Number of edges in the largest subgraph (e) 1725 917
Number of shortest paths 234,740 82,082
Largest connected subgraph size (S) 485 287
Diameter (d) 9 7
Average number of neighbors 7.113 6.390
Network density 0.015 0.022
Average shortest path length (a) 3.321 3.213
Network heterogeneity 1.380 1.376
Clustering coefficient 0.255 0.269
Network centralization 0.145 0.192
(1}2 g\;ae.lellz iitzlrriggril;rl—law curve fitting of node 0913 0.846

Table 2. Descriptive parameters for the molecular networks associated with temozolomide resistance in
glioma.

MAPK signaling pathway, toll-like receptor cascade,
autophagy, cellular senescence

apoptosis, DNA damage response, cytoplasmic
2 84 ribosomal proteins, ATM signaling pathway, regulation
of cell cycle progression, p53 pathway

amino acid metabolism, unfolded protein response,
3 94 antigen processing and presentation, ubiquitin-
proteasome system

4 17 Mitotic G1-G2/M phases, centrosome maturation

detoxification of reactive oxygen species, cellular
response to stress

focal adhesion, regulation of actin cytoskeleton,
ECM-receptor interaction, cytokine-cytokine receptor

6 12 interaction, NGF, PDGF, SCF-Kit, DAP12 and PI3K/
Akt pathways.
7 16 apoptosis
matrix metalloproteinases, Insulin-like growth factor
8 19
uptake
9 15 TGEF- receptor signaling pathway
10 9 cell cycle and mRNA processing

Table 3. Main functions and pathways enriched in each moduleofthe GeneMania network.

found in the average clustering coefficient after removing 20-25% of the nodes using the degree- and
PDB-based strategies. This observation indicates that broad changes in network modularity precede the
decay in network resilience.

The examination of nodes with both high degree and betweenness identifies known and
novel targets for overcoming glioma drug resistance. Considering the above results, we further
analyzed the nodes with both high degree and betweenness due to their higher relevance for maintaining
the network structure and topological robustness. We decided to center our downstream analysis on the
nodes from GeneMania network, considering that most nodes in the HS network were also present in
GeneMania network, as displayed in the Venn diagram of Fig. 3A.

We plotted the degree and betweenness values for all nodes in GeneMania network to identify those
ones with high values in both parameters (Fig. 3B). A good linear correlation was observed between
degree and betweenness values for the nodes (r*= 0.7581), highlighting the hierarchical organization of
this network. Additionally, a significant part of these central nodes participate of the PI3K-Akt-mTOR
and Ras-Raf-Erk pathways. These pathways were already associated with glioma malignancy and
chemoresistance?® and thus represent promising targets for drug development in glioma?!. These central
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Number
Module | of proteins | Main enriched functions and pathways

Cytokine-cytokine receptor interaction, melanoma, JAK-STAT
signaling pathway, MAPK signaling pathway, TLR signaling

1 86 pathway, apoptosis, glioma, ESC Pluripotency Pathways, IL-1
pathway, senescence and autophagy, signaling by ERBB4, SCF-
KIT, ERBB2, FGFR andPDGF

mRNA processing, Mitotic anaphase, negative regulation of the

2 12 | PI3K/AKT network
Tight junction, calcium signaling pathway, signaling pathways
3 13 in glioblastoma, endothelin pathway, DNA damage response,

calcitonin-like ligand receptors, negative regulation of the PI3K/
AKT network

Regulation of action cytoskeleton, adherens junctions, cell cycle,
4 33 ATM signaling pathway, TP53 signaling pathway, DNA damage
response, EPH-Ephrin signaling

ECM receptor interaction, focal adhesion, cell communication,
5 55 WNT signaling pathway, IL6 and IL3 pathways, TGF-beta
signaling pathway, negative regulation of MAPK cascade

Ribosome, NOD pathway, translation factors, caspase cascade

6 15 . .

in apoptosis

MAPK signaling pathway, apoptosis, cellular response to stress,
7 54 .

toll-like receptor cascade,
8 17 Notch signaling pathway, calcium signaling pathway, insulin

signaling pathway

Table 4. Main functions and pathways enriched in each module of the HS network.

nodes are mainly distributed in the modules 1 and 6 of the TMZ resistance network, corresponding to
the biggest clusters identified in the network.

Next, we determined the number of previous studies assessing the relationship between each node
and the glioma or temozolomide words, with the aid of GenClip, a literature mining tool. We plotted
these values against the degree or against the product of degree and betweenness for each node in order
to detect central nodes less studied in glioma research to date (Figures 3C and 3D). These nodes were
colored in orange in the graph and some examples are Jakl, Pik3ca, Mapkl4, Rb1 and E2fl.

Nodes with high degree and betweenness are important for the viability of
temozolomide-resistant glioma cells. We analyzed in silico the potential of nodes with (i) high
degree (HD), (ii) high betweenness (HB) and (iii) both high degree and high betweenness (HDB) for
altering the viability profile of glioma cells. To achieve this goal, we used the data from the Project
Achilles??, which contains a database of viability scores across a panel of cancer cell lines after small
hairpin RNA (shRNA)-based depletionof target genes. These scores are the log2-based proliferation rates
between cells treated with the representative stRNAs and control cells incubated with pooled shRNAs.

The in silico validation was focused on the proliferation data from the glioma cell lines T98G, A172,
LN382, U21MG and U343. These cell lines were selected because they are resistant to TMZ treatment,
according to previous data?®~%. Interestingly, the comparison of the average log 2 fold changes in cell
viability after silencing HD, HB and HDB proteins showed the statistically significant higher pro-death
potential of these proteins compared to proteins in the low centrality groups. These results were found
when nodes contained in GeneMania network and also analyzed by Project Achilles were separated into
two groups: the first one with the top ten percent nodes in terms of centrality values, and the second one
with the bottom ten percent nodes. These results are displayed in Fig. 4.

Proteins corresponding to central nodes in the TMZ resistance network exhibit a higher pre-
dictive value for glioma patient survival. To support the relevance of nodes (i.e. proteins) with
high degree and/or betweenness for glioma patients survival, we compared the absolute logarithmic ratio
of the relative risks (hazard ratios=HR) between groups of patients with high or low expression levels
for each protein (In (HR-high/HR-low), using data from the PrognoScan database?. These results con-
firmed that central nodes in the TMZ resistance networks are associated with a significant higher risk of
patient survival or death when the top and bottom ten percent central nodes were selected for the high
and low groups, respectively. These results are summarized in Fig. 5.

Discussion

The molecular mechanisms of therapeutic resistance have been extensively investigated in cancer research,
which resulted in the addition of novel drugs to standard chemotherapies for overcoming cancer resist-
ance”. In this context, the analysis of molecular interaction profiles is an interesting approach for prior-
itizing novel mechanisms of drug combination in cancer®. Therefore, we explored here protein-protein
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Figure 1. Robustness analysis of the GeneMania network against topological attack. GeneMania network
was constructed using information from physical and pathway-related protein interactions contained in
GeneMania. Centrality-based attack schemes were focused on the removal of nodes in the descending order
of their centrality values. These strategies were classified as degree-based, betweenness-based and product

of degree and betweenness-based. The following network robustness parameters were calculated after each
round of removal: diameter (D), average shortest path length (A), average inverse path length (1/a), size (S),
number of edges (E) and average clustering coefficient (cc) in each resulting subgraph.

interaction networks associated to TMZ resistance in order to predict key targets for tackling glioma
drug resistance.

Since cell signaling networks exhibit modular organization, we sought to identify network clusters
with specific biological functions that could be involved in glioma resistance. The study of modular
organization in cancer signaling networks has already demonstrated that network modularity is cor-
related with cancer patient survivability®'. Moreover, proteins belonging to specific hallmarks of can-
cer’? tend to be enriched in particular network modules, and therefore complex processes in cancer
cells may involve the participation of several modules. Consequently, the prediction of which hallmarks
are predominantly activated in each tumor could be achieved by the identification of major modules
obtained from genomics data®*. Accordingly, we showed here that chemoresistance to TMZ, a DNA
alkylating agent, may be attributed not only to a classical hallmark of genome instability, but also to other
hallmarks of malignant glioma cells, such as sustained proliferation, cell survival and invasion. Indeed,
central nodes in the TMZ resistance network participate of the PI3K-Akt-mTOR and Ras-Raf-Erk path-
ways, major downstream pathways activated by growth factors during glioma progression®*?!. Moreover,
the presence of immune-related modules in the TMZ resistance networks highlights the relevance of
immune escape functions for glioma chemotherapy resistance.

We also hypothesized that node hierarchy could influence the efficiency of a candidate target for over-
coming chemotherapy resistance®. The virtual node knock-out experiments performed here revealed
that the PDB-based attack was more effective in interfering with network robustness and modularity,
suggesting the TMZ resistance network is susceptible to the attack of nodes with high degree and high
betweenness. This is because removing nodes that are hubs (high degree) and bottlenecks (high between-
ness) at the same time disconnects groups of nodes in the network, reducing the magnitude of the largest
subgraph. The same does not occur when the attack strategy is based on removing nodes that are only
hubs, as removing fractions of hubs increases the distance between nodes but they may remain con-
nected in a largest subgraph. Indeed, genes that are defined as hubs and bottlenecks are better correlated
with essentiality in cancer networks®. These nodes are important because they have a large number of
connections and participate at the major intersections between modules in networks®”. Therefore, the
attack of hub-bottlenecks, rather than hub-nonbottlenecks, disclosed the fragility of modular scale-free
networks®.

We next evaluated in silico if knocking-down proteins corresponding to central nodes in the TMZ
network could modify the viability of glioma cell lines. The decrease in cell proliferation observed
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Figure 2. Robustness analysis of the HS network against topological attack. HS Network was constructed
using protein interaction information from the Human signaling (HS) network database. Centrality-based
attack schemes were focused on the removal of nodes in the descending order of their centrality values.
These strategies were classified as degree-based, betweenness-based and product of degree and betweenness-
based. The following network robustness parameters were calculated after each round of removal: diameter
(D), average shortest path length (A), average inverse path length (1/a), size (S), number of edges (E) and
average clustering coeflicient (cc) in each resulting subgraph.

when central nodes are knocked down in temozolomide-resistant cell lines confirms the importance of
these nodes for glioma cell viability. Indeed, the association between node centrality and cell viability
is observed in different experimental models and nodes (i.e. proteins) that are more important for the
survival of an organism are formally called essential®®. Hence, the integration of molecular interaction
profiles and cell viability data may help to validate the extent to which central nodes are essential for cell
proliferation in several cancer cell lines.

We also investigated the survival predictive values of nodes displaying high or low centrality values
using data from glioma patients. This comparison showed that high centrality nodes have a superior pre-
dictive value, confirming that network topological structure is related to cancer patient survival. Indeed,
cancer cells exhibiting higher molecular network complexity are more refractory to therapy than those
with less complex pathways®, corroborating the discovery of novel therapeutic targets through the pri-
oritization of nodes according to their centrality values.

The network topology analysis performed in this study revealed a set of central nodes associated
to glioma malignancy, such as Map3k14, Mapkl, Actn4, Hspa5, Atf2, Racl,E2fl, Shcl, Pik3ca, Aktl,
Vim and Egrl. For example, Map3k14, Atf2, Racl and Egrlplay a role in glioma proliferation and inva-
sion*!-#, In parallel, the proteins encoded by Pik3ca, Aktl and Actn4 are overexpressed in malignant gli-
omas and correlate with poor survival rates*>*¢. Finally, the inhibition of Mapkl improves the efficacy of
temozolomide in brain-implanted tumors*” while decreasing E2f1 expression reverses cisplatin resistance
in glioblastoma cells*®. All these proteins may represent interesting targets for testing drug combinations
to sensitize glioma cells to temozolomide.

In conclusion, our results show how the topological robustness analysis of protein interaction net-
works may be helpful for identifying therapeutic targets in cancer. Such approach offers the opportunity
to determine target combinations for experimental evaluation by exploring the synergistic effects of
targeting multiple proteins on the robustness of drug resistance networks*. This analysis showed that
investigating nodes with high degree and high betweenness could be an interesting approach for unrav-
eling chemotherapy resistance mechanisms and disclosing novel drug targets. The in silico validation of
these findings confirmed the importance of central nodes for tumor cell viability and patient survival in
glioma, supporting future studies on network topology features for prioritizing cancer targets.
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Figure 3. The analysis of nodes with high degree and betweenness identifies known and novel targets
for overcoming glioma drug resistance. (A) Venn diagram showing that most nodes contained in the HS
network are also part of the GeneMania network. (B) Scatter plot of degree and betweenness values for all
nodes to identify those ones with high relative values in both parameters. (C) Scatter plot of node degree
values and published studies to identify central nodes less studied in glioma research. Nodes (proteins)less
studied in glioma research that also exhibited a high degree were colored in green. Nodes well studied in
glioma research were colored in eitherlight or dark purple, according to their low or high degree values,
respectively, (D) Scatter plot of the product of degree and betweenness values and published studies for
each node to identify central nodes less studied in glioma research. Nodes (proteins) less studied in glioma
research that exhibited a high degree x betweenness were colored in orange. Nodes well studied in glioma
research were colored in either royal or dark blue, according to their low or high degree x betweenness
values, respectively,

Materials and Methods

Search of genes and proteins related to TMZ resistance in the literature. Data from prior
studies performed with TMZ-resistant glioma cell lines and human glioma samples were searched on the
database PubMed. We sought for studies describing molecules with functional or expression level associ-
ation to TMZ resistance in glioma. Functional association was determined when targeting a specific gene
or protein led to an alteration in glioma cell viability in the presence of TMZ. Conversely, the expres-
sion level association was considered when a TMZ resistance phenotype was correlated with a specific
gene/protein differential expression profile. This data was compiled and manually curated in order to
use only the most relevant studies in the downstream analysis. Protein names from other species were
converted to their human orthologs.

Construction of the protein interaction networks and identification of functional modules
associated with TMZ resistance. The curated dataset was used to build a protein interaction net-
work showing the connections between the molecules related to TMZ resistance. The Cytoscape plugin
GeneMania'® and the Human signaling network database'® were employed to identify physical and path-
way interactions between the seed nodes. The descriptive parameters of the networks were calculated
using the Cytoscape Plugin Network Analyzer®. After the networks were built, groups of densely inter-
connected nodes named clusters (modules) were identified using the Cytoscape plugin clusterMaker®!,
and the elements belonging to each one of these modules were functionally enriched to reveal overrep-
resented biological functions, using the online bioinformatics tool Enrichr®?. The databases KEGG, Wiki
pathways, Reactome, Biocarta and Gene Ontology were used for searching relevant enriched functions
via Enrichr interface. Only functions with a p-value of less than 0.05 were considered in the analysis.
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Figure 4. The knock-down of genes high degree and betweenness alter the viability of glioma cells.
Comparison between the average log 2 fold changes in cell proliferation after silencing nodes with high

or low centralities in temozolomide-resistant glioma cell lines. The viability scores were obtained from the
Project Achilles, using information from the cell lines T98, A172, LN382, U21MG and U343. Nodes were
divided in high and low degree groups (HD and LD), high and low betweenness (HB and LB) groups or
high and low product of degree and betweenness (HDB and LDB) groups. The comparison groups were
formed by separating the proteins into two equal groups (A-C), containing the top or bottom ten percent
nodes according to the established centrality rankings. Statistical comparisons were performed between the
groups with high and low degree, betweenness or product of degree and betweenness, using Student’s t tests
with p < 0.05 as the significance threshold. The high centrality nodes (proteins) that exhibited a prominent
change in cell proliferation when silenced were highlighted in red.

Topological Analysis of the TMZ resistance network. Centrality parameters were obtained for
all nodes in the networks using the Cytoscape plugin CentiScaPe®. The topological parameter degree
accounts for the number of edges linked to a given node, while betweenness centrality represents the
number of shortest paths passing through a specific node, among the total number of shortest paths in
the network.

Network centrality-based attack strategies. The paradigm between error tolerance and attack
vulnerability is usually applied to evaluate the robustness of a scale-free network. In this sense, net-
work topology-based attack simulations were performed here to evaluate the vulnerability of the TMZ
resistance network against targeted attack. Nodes were ranked according to their centrality values for
prioritizing the node removal of highly scored network nodes. Centrality-based attacks were performed
in the original network to determine the impact of orderly removing these nodes on network robustness
parameters. The attack strategies were classified as degree-based (nodes with the highest degree were
removed first), betweenness-based (nodes with the highest betweenness were targeted first) and product
of degree and betweenness-based attacks (nodes with the highest products of degree times betweenness
were removed first).

Robustness analysis of the network against topological attack. The robustness of the networks
associated with TMZ resistance was determined by calculating some robustness parameters after rounds
of removal based on deleting fractions of five percent of the nodes at each removal time. The robustness
parameters evaluated were: i) diameter; ii) size of the largest connected subgraph; iii) number of edges
in the largest connected subgraph; iv) average geodesic path; and v) average inverse geodesic path. The
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Figure 5. Superior predictive value of proteins with high degree and betweenness for glioma patient
survival. Comparison of the survival predictive values between nodes with high and low centralities. The
relative hazard ratios were obtained from the Prognoscan database. The relative risk was determined as the
relative hazard ratio between groups of patients with high or low expression levels of each protein (In (HR-
high/HR-low). Nodes were divided in high and low degree groups (HD and LD), high and low betweenness
(HB and LB) groups or high and low product of degree and betweenness (HDB and LDB) groups. The
comparison groups were formed by separating the proteins into two equal groups (A-C) containing the top
or bottom ten percent proteins, according to the established centrality rankings. Statistical comparisons were
performed using the absolute relative risks between the groups of nodes with high and low degree, high and
low betweenness or high and low product of degree and betweenness, using Student’s t tests with p < 0.05 as
the significance threshold. The high centrality nodes (proteins) that exhibited a prominent predictive value
for patient death or survival were highlighted in red.

calculation of these parameters was implemented using the Cytoscape Plugin Network Analyzer® and
only the largest subgraph in each round of removal was considered to calculate the above parameters.

Relationship between node centrality and novelty in glioma research. The degree and between-
ness value for all nodes were plotted in scatter plots to identify nodes with high values in both centrality
parameters. In addition, these scatter plots were constructed using either the degree or the product of
degree and betweenness values (x coordinate) against the number of studies previously investigating the
relationship between each node and glioma or temozolomide words (y coordinate), with the aid of the
literature mining tool GenClip*. The scatter plots were built using the GraphPad Prism® 5.

Examination of the importance of central nodes for the proliferation of TMZ-resistant glioma
cells. The effects on cell viability of knocking down specific proteins were evaluated employing data
from Project Achilles, using information from the temozolomide-resistant glioma cell lines T98, A172,
LN382, U21MG and U343. The average log2-fold change in cell proliferation was calculated for each
gene, using data from the corresponding cell lines. The differing role of central nodesfor the proliferative
state of TMZ-resistant glioma cells was determined by comparing groups with high and low centrality
values. The groups were formed by selecting the top and bottom ten percent proteins in terms of their
centrality values. These ten percent highest and ten percent lowest-ranked proteins were identified in the
initial network based on their degree, betweenness or product of degree and betweenness.

SCIENTIFIC REPORTS | 5:16830 | DOI: 10.1038/srep16830 10



www.nature.com/scientificreports/

Analysis of the predictive value of central nodes for glioma patients’ survival. Analogously
to the analysis performed with the cell proliferation data from Project Acchiles, glioma patient survival
data (Prognoscan database) was used to determine if higher centrality nodes would have a superior
predictive value than lower centrality nodes in the TMZ resistance network. The absolute relative risks
(hazard ratios= HR) between groups of patients with high or low expression levels for each protein (In
(HR-high/HR-low) were obtained for each protein and only significant results (adjusted p value < 0.05)
were used in the final analysis. The distinct predictive value of central proteins was assessed by com-
paring groups with high and low centrality nodes. These groups were formed by selecting the top and
bottom ten percent proteins in terms of centrality values. These ten percent highest and ten percent
lowest-ranked proteinswere identified in the initial network based on their degree, betweenness or prod-
uct of degree and betweenness.

Statistical analyses between the high and low centrality groups. The statistical comparisons
between the groups with high and low degree, betweenness or product of degree and betweenness were
made using Student’s t tests with p < 0.05 as the significance threshold, using the GraphPad Prism® 5.
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