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Inhibition of cancer-promoting kinases is an established therapeutic strategy for the treatment of
many cancers, although resistance to kinase inhibitors is common. One way to overcome resistance
is to target orthogonal cancer-promoting pathways. Bromo and Extra-Terminal (BET) domain
proteins, which belong to the family of epigenetic readers, have recently emerged as promising
therapeutic targets in multiple cancers. The development of multitarget drugs that inhibit kinase

and BET proteins therefore may be a promising strategy to overcome tumor resistance and prolong
therapeutic efficacy in the clinic. We developed a general computational screening approach to
identify novel dual kinase/bromodomain inhibitors from millions of commercially available small
molecules. Our method integrated machine learning using big datasets of kinase inhibitors and
structure-based drug design. Here we describe the computational methodology, including validation
and characterization of our models and their application and integration into a scalable virtual
screening pipeline. We screened over 6 million commercially available compounds and selected 24 for
testing in BRD4 and EGFR biochemical assays. We identified several novel BRD#4 inhibitors, among
them a first in class dual EGFR-BRD#4 inhibitor. Our studies suggest that this computational screening
approach may be broadly applicable for identifying dual kinase/BET inhibitors with potential for
treating various cancers.

Kinase inhibitors have been identified for the treatment of various cancers'?. However, compensatory
mechanisms diminish the long-term efficacy of these inhibitors®. Drug resistance is often observed in the
. clinic as rapidly dividing cancer cells are able to avoid inhibition by a single targeted therapy through a
© variety of mechanisms®. The resistance of tumors toward kinase-directed therapeutics is often accompa-
nied by a distinct change in signaling network composition through adaptive kinome reprogramming,
allowing the tumor to elude effects of the drug and manifest resistance®. An established strategy to
improve the durability of clinical responses to targeted therapies is to simultaneously inhibit multiple
cancer-driving kinases. However, discovering kinase inhibitors with an appropriate multitarget profile has
been challenging and necessitated the application of combination therapies, which can pose major clinical
development challenges®=®. We therefore sought a strategy to identify single agent polypharmacological
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compounds with the ability to target multiple cancer promoting pathways, but that does not rely on
inhibiting multiple kinases. We chose to target epidermal growth factor receptor (EGFR) along with the
epigenetic reader bromodomain-containing protein 4 (BRD4). EGFR is a receptor tyrosine kinase (RTK)
that is amplified or mutated in several cancers and is the subject of intensive drug discovery efforts!®-12.
Similarly, BET bromodomain proteins have recently emerged as possible drug targets in multiple cancers.
BET proteins are epigenetic readers that primarily recognize acetylated lysine residues on histones, and
function in regulating gene transcription'®. Their role in modulating chromatin structure is important
for proper cellular function and expression of genes involved in multiple signaling pathways. BET pro-
teins have been implicated in cancer cell proliferation by controlling the activity of various oncogenes
required for cell cycle progression't. BRD4 is possibly the best-characterized BET protein, which contains
two regions that bind acetylated lysine residues termed bromodomains, Bromodomain 1 (BRD4(1)) and
Bromodomain 2 (BRD4(2)). Both domains bind to acetylated histones primarily through interactions in
the ZA loop and BC loop-helix junctions of BRD4(1) and BRD4(2)"". Highly selective small molecules are
able to displace these bromodomains from chromatin; thereby reducing transcription of oncogenes, such
as MYC. Several small molecule BRD4 inhibitors have been developed, which show efficacy in reducing
growth of multiple tumors in vivo and are in clinical trials for the treatment of solid tumors'®!”. Thus,
BRD4 is a promising drug target for the treatment of various cancers. Interestingly, some known kinase
inhibitors potently inhibit BRD4, suggesting that the therapeutic efficacy of these compounds may be due
in part to BRD4 inhibition'®". In addition, use of the BRD4 inhibitor JQ1 in combination with the EGFR
inhibitor lapatinib has been shown to suppress lapatinib-induced kinome reprogramming in ERBB2+
breast cancer cells, where other kinase inhibitor combinations could not’. This knowledge-based ration-
ale is also supported by data from the Library of Integrated Network-based Cellular Signatures (LINCS,
http://www.lincsproject.org/). We show that transcriptional response signatures of known EGFR and
BRD4 compounds are distinct from one another as well as from a background population, suggesting
that EGFR and BRD4 inhibitors utilize orthogonal signaling networks and different transcription factors,
therefore supporting the idea of prolonged efficacy and reduced resistance when using a compound that
targets both proteins. To identify such dual inhibitors we describe a large-scale computational screening
pipeline, which leads to the discovery of novel BRD4 inhibitors and a first in class multitarget EGFR and
BRD4 inhibitor. We suggest that this virtual screening protocol can be adopted across the human Kinome
for identifying dual kinase-BRD4 inhibitors.

Results

Transcriptional profiles of EGFR and BRD#4 inhibitors show distinct signatures. The Library
of Integrated Network-based Cellular Signatures (LINCS) program (http://www.lincsproject.org) is pro-
ducing large profiling datasets and computational tools to advance the development of systems-wide
network-based disease models with the goal to develop more efficacious and safer therapeutics. LINCS
datasets, for example, include genome-wide transcriptional profiles across a wide range of cell lines
and tens of thousands of drug and genetic perturbations generated at the Broad Institute (http://www.
lincscloud.org/). We have previously shown how transcriptional profiles correlate to chemical similarity,
LINCS (KINOMEScan) and predicted small molecule kinase activity as well as their enrichment by sig-
naling pathways®. Here we demonstrate that transcriptional signatures of EGFR kinase and BRD4 inhib-
itors are distinct from one another as well as from other perturbation profiles. This would be expected
if the cellular response to these inhibitors occurs via orthogonal pathways and transcription factors.
We used data generated via the L1000 assay (http://www.lincscloud.org/11000) in MCF7 cells. Twelve
reported EGFR inhibitors and four known BRD4 inhibitors (Supplementary Table 1) were included in
the dataset. Pearson correlation coeflicients were computed for all pairwise signatures. Four main sig-
nature populations, namely, only EGFR, only BRD4, the intersection of EGFR and BRD4, and all Other
inhibitors, were compared using Welch's two sample t-test (Fig. 1). Highly significant p-values in the
range of 107> to 10~* were obtained when comparing EGFR to BRD4, BRD4 or EGFR to Other, as well
the EGFR-BRD4 intersection to Other. P-values of 1073 were obtained when comparing the EGFR-BRD4
intersection to either BRD4 or EGFR. These results show that signatures of EGFR and BRD4 inhibitors
as a group are distinct from the global reference population (Other) as well as distinct from one another.
This analysis supports our rationale of developing dual EGFR-BRD4 inhibitors.

Dual target screening approach. We then developed a practical computational screening protocol
in order to identify dual EGFR-BRD4 inhibitors. Our virtual screening approach incorporated highly
predictive ligand and structure-based models that were constructed from small molecule kinase inhibi-
tion datasets, BRD4 protein structures, and physicochemical property predictors. We successfully used
this pipeline to identify novel BRD4 inhibitors and a dual EGFR-BRD4 inhibitor from over six million
commercially available compounds (Fig. 2).

Scalable machine learning classifier to predict novel EGFR inhibitors. Over three thousand
unique compounds with reported EGFR kinase inhibition (ICs, or K;< 100nM and close to five thou-
sand compounds <1 ;M) are available in the Kinase Knowledgebase (KKB) (see Methods), along with
almost six hundred thousand kinase inhibitors curated from articles and patents that have no reported
EGEFR activity (presumed inactive). Given these large datasets, we chose ligand-based Laplacien-modified
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Figure 1. Transcriptional profiles of EGFR and BRD4 inhibitors are distinct. The box plot shows
correlation matrix variances for each comparison of signatures generated by target inhibitors in the MCF7
cell line at 10 M for 24 hours. P-values obtained by Welch’s two sample t-test comparing the populations of
pairwise correlations.

Naive Baysian classifiers that we had previously developed and described in detail?!. The models were
systematically cross-validated generating enrichment factors and representative receiver operating char-
acteristic (ROC) curves using 50% of the data as test set (Supplementary Figure 1). Averaging 20 cross
validation runs with randomly selected 50/50 split training/test compounds, ROC scores of 0.99 and
0.98 were obtained for the 1 and 0.1 xM models, respectively. Enrichment factors of 78 and 66 were
obtained for the top 1% of compounds, which is close to the upper bound maximum possible enrichment
under these conditions. Both models were applied to evaluate over six million commercially available
compounds from the eMolecules database. In addition to the standard Laplacien-modified Bayesian
scores and the binary class predictions, we computed for all compounds the estimated probabilities
that a sample was in the active class (EstPGood). EstPGood is based on assumed normal distribution
of scores in the active and inactive class and is a normalized score that is comparable across models.
We also computed basic physicochemical properties including molecular weight, hydrogen bond donor
and acceptor counts, polar solvent accessible surface area, and Ghose Crippen octanol-water partition
coefficient (ALogP). From the library of more than 6 million compounds with kinase activity predictions,
we selected only compounds that were in the active class for both EGFR models (cutoff at 1 and 0.1 uM
activity). The remaining 122,136 compounds were then further filtered to simultaneously optimize prob-
ability of kinase activity and favorable physicochemical properties using interactive visual analysis and
selection in TIBCO Spotfire (see Methods for details). 908 compounds were selected sampling the most
likely EGFR actives based on predicted probability of EGFR activity (EstPGood), and compounds of
favorable (drug-like) physicochemical properties relaxing probability of EGFR activity.

Ensemble docking with data fusion to predict novel BRD4 binders. In contrast to EGFR
kinase, publicly available small molecule inhibition and binding data for BRD4 are limited. However,
co-crystal structures of BRD4 are available in the Protein Data Bank (PDB) allowing for an unbiased
structure-based approach to predict BRD4 bromodomain binding. We built nine distinct docking mod-
els after selecting representative co-crystal structures, considering co-crystal ligand chemical diversity,
quality and resolution of the structures and conserved water molecules that participate in ligand binding
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Figure 2. High-throughput computational screening pipeline to identify dual inhibitors of EGFR kinase
and BRD4(1).

(water bridges). These structures, representing an ensemble of conformations and binding interactions
of BRD4(1), were prepared, optimized, and docking models were generated and validated as described
in Methods. Re-docking of the co-crystal ligands into their corresponding receptors reproduced the
co-crystal poses in each case with route-mean-square deviation (RMSD) values of less than 1 A. Prior to
docking, 2D representations of compounds were processed to generate stable tautomers and protonation
states at pH 7 + 2 and 3D conformations. Compound docking was performed for each model using Glide
standard precision (SP), which was run distributed over several compute nodes (see Methods). Glide is
a flexible docking method to predict multiple ligand binding poses and assigns a score to each pose by
estimating binding affinity, incorporating several energetic terms and empirical parameterization?>?.
To maximize accuracy of the ensemble docking approach, we calculated 18 fused scores by hierarchical
aggregation of the individual docking scores at three stages: (i) pose of each unique ligand representa-
tion, (ii) compound structure (tautomer and protonation state), and (iii) BRD4 structure representation
(docking model) as described in detail in Methods (Supplementary Figure 2). We characterized these
fusion scores by their statistical distributions, correlation to known BRD4 activities and ROC and enrich-
ment of the resulting (fusion) models. After evaluation and considering rationale of simplicity, we chose
a scoring scheme that corresponds to the best pose of the best ligand representation of each compound
for the best BRD4 structure representation.

This BRD4 data fusion model was validated using 246 known actives extracted from ChEMBL (ver-
ison 18)** and curated from the literature, and 15,240 corresponding decoy compounds obtained from
the Directory of Useful Decoys® as described in Methods. Using the active BRD4 compounds and the
decoy set, we computed sensitivity (true positive rate), specificity, accuracy, enrichment factors and ROC
score of the docking fusion model. The docking score cutoffs of <—7 and <—8, (smaller is better) cor-
responded to approximately —2 and —3 standard deviations from the mean distribution of predicted
compound docking scores. Four different scenarios were calculated for enrichment, with active BRD4
compounds defined as either pIC;,/pK,/pK; (pActivity) > 5 or 6, with all others considered inactive, and
predicted active docking score <—7 or —8 respectively (Table 1). Evaluating the docking model per-
formance at a docking score threshold of <—7 gave high sensitivity indicating that the model was able
to identify active molecules appropriately, but the models were less specific and accurate, compared to
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5 -7 0.96 0.65 0.66 0.929 59.4 342 4.4
5 -8 0.60 0.96 0.95
6 -7 0.95 0.65 0.65 0.927 101.5 50.3 4.3
6 -8 0.68 0.95 0.95

Table 1. Evaluation and characterization of the BRD4 docking data fusion model. For different activity
and docking score cutoffs, sensitivity (S), specificity (SPC), accuracy (ACC), ROC scores and enrichment
factors at 0.1, 1 and 20 percent screened subset are shown. (*) To compute the ROC score, docking scores
were used for rank ordering without a cutoff.

A) ROC Curve of the BRD4(1) Docking Model for pIC50 > 5
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

True-positive rate (sensitivity)

0.0
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
False-positive rate (1 - specificity)

B ) ROC Curve of the BRD4(1) Docking Model for pIC50 > 6
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

True-positive rate (sensitivity)

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
False-positive rate (1 - specificity)

Figure 3. ROC curves of the BRD4 docking data fusion model. The activity cutoff is (a) pICs,> 5 and (b)
pICs,> 6. The ROC curve is true positive rate (sensitivity) over false positive rate (1 - specificity).

the evaluation of known and decoy compounds at docking score threshold of <—8. Notably, differences
in activity value thresholds of pActivty > 5 and 6 respectively gave little differences in model predictive
performance; however, enrichment factors calculated at 0.1 and 1% of the top docked compounds were
much higher at the pActivity> 6 activity threshold. The receiver operating characteristic area under
the curve (ROC score) was excellent for both activity cutoffs, further supporting the models” predictive
performance (Fig. 3). These statistical cross validation results confirm very high quality of the consensus
docking data fusion model and the applicability for virtual screening.

In addition to ROC scores and enrichment factors we also investigated how the aggregate docking
scores and reported pActivity values relate quantitatively. As can be expected, there is no global correla-
tion, because docking scores estimate relative binding affinity and typically cannot be compared across
different binding modes. However, after clustering known BRD4 actives by maximum common substruc-
ture and topological features, we found good correlation for conserved chemotypes. Pearson correlation
coefficients (R?) in the range of 0.4 to 0.7 were observed for three representative chemical series, namely
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Figure 4. Docking scores versus reported BRD4 pActivities (pIC;,/pK,/pK;) and Pearson correlation
results of representative BRD4 inhibitors by chemotypes.

isoxazole-substituted quinolines, triazolo-phthalazines, and isoxazolo-thieno-azepines, which include 6
to 23 compounds (Fig. 4).

We applied this BRD4(1) ensemble docking protocol to score the 908 compounds filtered from com-
mercially available libraries using the EGFR kinase activity classifiers and physicochemical properties.
Compounds were then selected based on BRD4 docking score, EGFR classifier EstPGood, commer-
cial availability by vendor (to minimize the number of suppliers), physicochemical properties, chemical
diversity and manual review. Although our docking study included known EGFR kinase inhibitors that
had been selected by our classifiers from the commercial libraries, these compounds did not receive
acceptable docking scores for further prioritization and testing.

Experimental validation of predicted BRD4 and EGFR actives. After searching multiple com-
mercial providers for the top 108 compounds, Enamine LLC (http://www.enamine.net/) provided 24
compounds comprising 5 chemical scaffolds including substituted 2-pyrrolidinones, quinazolin-4-amines,
thienopyrimidin-4-amines, and imidazolidinones (Supplementary Table 2). Figure 5 shows the 24 pur-
chased compounds among 908 molecules that were selected using the EGFR classifiers and physico-
chemical properties. As illustrated, several compounds have confirmed activity against BRD4(1) and
one compound, Z118332870 (2870), is active against BRD4 and EGFR kinase. Compounds that were
not confirmed BRD4(1) actives were not tested in the EGFR assay because we were primarily interested
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Figure 5. Predicted probability of EGFR activity (EstPGood for pICs, > 6) vs BRD4 aggregate/fusion
docking score for 908 compounds that were filtered from commercial libraries using the EGFR kinase
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compounds tested in the BRD4(1) assay, categorized by their activity against BRD4 and EGFR. Only
compounds that were confirmed active against BRD4 were further tested for activity against EGFR; any of
the black circles therefore could also be EGFR actives.

in novel dual BRD4 and EGEFR inhibitors. To evaluate small molecule BRD4 bromodomain binding, we
utilized a biochemical alphascreen assay that measured disruption of BRD4(1) binding to pre-acetylated
biotin-histone 4 peptide by proximity detection of the conjugated donor and acceptor beads via transient
singlet oxygen. ICs, values were calculated using nonlinear regression from GraphPad Prism Version
5.0c for OSX (GraphPad Software, La Jolla California USA, www.graphpad.com) from 9 concentrations
in triplicate (see Methods) with an average ICs, value of 9.02 uM for 2870 (Fig. 6a). To validate results,
a counter-screen assay (see Methods for details) was performed to ensure that compounds were not
interacting with assay components other than recombinant BRD4(1) (Supplementary Figure 3). The
counter-screen assay indicated that each active compound was not interfering with alphascreen assay
components.

Confirmed active compounds 7118332870 (2870), 231220012 (0012), and Z115668302 (8302) repre-
sent three distinct chemotypes that are novel (by topological similarity) compared to all known BRD4
compounds (Fig. 7). Additional analogs of sulfonamide compound 8302 were also active in the alphas-
creen assay. To further validate the BRD4 binding affinity of 2870, differential scanning flourimetry (DSF)
was performed with BRD4(1). A mean ATm value of 1.15°C was obtained (Supplementary Figure 3).
Based on the standard curve, this corresponds to a predicted ICs, value of 9.1 uM'®. We then determined
whether each compound inhibited EGFR kinase (ERBB1), ERBB2 and ERBB4 using a kinase enzyme
activity assay (see Methods). Only 2870 inhibited EGFR (ICs,= 44.2nM) (Fig. 6b) with about 200 fold
selectivity over ERBB2 (8.73 uM), and 500 fold selectivity over ERBB4 (24.2 uM) (Table 2).

Characterization of EGFR-BRD4 dual inhibitors by molecular dynamics. To characterize how
2870 binds to BRD4(1) at the atomic level and gain insights into binding dynamics, we performed a
200 nanosecond (ns) molecular dynamics (MD) simulation (see Methods). Simulation analysis showed
a conserved interaction between pyrimidine nitrogen at position 6 and asparagine 140 (the conserved
acetyl-lysine binding motif), proline 82, leucine 92 and isoleucine 146 (Fig. 8a). While this primary
interaction was taking place, protein and ligand RMSD values stayed relatively low, indicating a stable
binding conformation (Supplementary Figure 4a). However, from 40 to 80 ns, an increase in ligand
RMSD is observed as the ligand switches its primary interaction to tryptophan 81 through aromatic
stacking interactions, destabilizing the complex. After 80 ns, the compound returns to its original bind-
ing conformation and restabilizes the binding interactions observed previously throughout the remaining
120ns, with additional interactions observed with phenylalanine 83, glutamine 85, valine 87, cysteine 136
and tyrosine 139 (Fig. 8c).

Docking and MD were also performed with the EGFR tyrosine kinase domain (TKD) and compound
2870 to compare with the simulation results in BRD4. Two different crystal structures of the EGFR TKD
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2870
Target ICs, (M)
BRD4(1) 9.02
EGFR (ERBB1) 0.044
ERBB2 8.73
ERBB4 242

Table 2. Binding affinity of 2870. Activity of compound 2870 against BRD4(1) by alpha screen and EGFR
TKD and other related kinase family members obtained by kinase activity enzyme profiling.

from the PDB were used to build docking models (see Methods). The top docking score of 2870 in the
TKD (—9.97) supports its observed high affinity. These results are also consistent with the MD simu-
lation. Docking pose and MD results clearly show 2870 as a type I tyrosine kinase inhibitor due to its
binding interactions with methionine 793 and threonine 854 in the DFG-in conformation of the kinase
domain activation loop. MD results show stable RMSD values of 2870 throughout the entire 50ns simu-
lation (Supplementary Figure 4b). Additional conserved residue interactions include alanine 743, lysine
745, cysteine 797, leucine 844, aspartic acid 855 and phenylalanine 856 (Fig. 8b,d). Throughout the time
series 2870 interacted with M793, K745, T854 and D855 (all residues associated with ATP binding) 97,
26, 19 and 12% of the time.

Discussion

Inhibition of cancer-promoting kinases is an established therapeutic strategy for the treatment of many
cancers. Thirty kinase inhibitors are approved for use in humans and hundreds more are in clinical
development®. Most of these drugs inhibit multiple kinases and in many cases their efficacy is related to
some extent to their poly-pharmacology. Rational design of such “selectively unselective” kinase drugs
that bind to the desired disease targets, but avoid off-target liabilities is very difficult due to the high
similarity of the ATP binding site across the human kinome?. It is likely that most of the approved
kinase drugs are marginally striking the balance favorably. In contrast, it may be easier to optimize
multi-target kinase BET bromodomain inhibitors, and there is strong evidence that such compounds
can exhibit favorable efficacy and pharmacology. For example, studies with ERBB2+ breast cancer have
shown that targeting multiple alternative kinases upregulated by adaptive kinome reprogramming after
the development of resistance to lapatinib increased growth inhibition of tumor cells variably. However,
BET bromodomain inhibition in combination with EGFR kinase inhibition was the most effective at
preventing kinome reprogramming due to its epigenetic regulation of multiple alternative kinases often
necessary for resistance and propagating ERBB2+ cell growth®®. It has also been suggested that kinase
inhibitors may be privileged inhibitors of BET bromodomain proteins and there are several examples of
well characterized potent dual bromodomain/kinase compounds, including a recent dual PLK1/BRD4
inhibitor'®. As a proof of concept study to identify multi-target kinase BET bromodomain compounds we
focused on EGFR TKD and BRD4(1) as a starting point for identifying more efficacious compounds tar-
geting cancers containing an EGFR amplification. We further rationalized the presumed efficacy of a dual
EGFR-BRD4 compound based on transcriptional response data from the LINCS project. Interestingly,
27 compounds from our docking study were also used in LINCS assays with many other docked com-
pounds sharing high chemical similarity (Supplementary Figure 5).

Using an extensive computational screening pipeline we identified a first in class dual EGFR-BRD4
inhibitor, validated by several BRD4 and EGFR inhibition assays and further characterized by extensive
molecular modeling. Our computational approach was based on ligand-based kinase classification models
and BRD4 structure-based models integrated with physicochemical property predictors into a compre-
hensive virtual screening workflow. The kinase classifiers were trained on thousands of EGFR inhibitors
against hundreds of thousands of kinase decoy compounds and the BRD4 structure-based models made
use of several available co-crystal structures. To estimate EGFR activity we built Laplacien-modified
Naive Bayesian classifier ligand-based models, which had previously shown strong predictive per-
formance. In addition, the method is scalable and applicable to large data sets, allows modeling in
high-dimensional spaces while avoiding overfitting and is appropriate for structurally diverse dissimilar
molecules, incorporating multiple activity classes into a single model (for example different binding
modes). Laplacien-corrected Naive Bayes classification is also reasonably resistant to noise such as false
positives or false negatives. It should be noted however, that these are probabilistic models and perfor-
mance is evaluated based on their ability to rank order compounds by a (predicted) property, which can
be quantified by enrichment factor and ROC score (see Results). The statistics-based characterization of
machine learning models (or any predictor) therefore should not be interpreted as a capability to predict
any single active compound or a certain percentage of a small sample size. In addition, we observed com-
pounds that were predicted active in the BRD4(1) ensemble docking model falling towards the bottom
of the EstPGood cutoff that was used to prioritize compounds for EGFR activity using the ligand-based
machine learning models. This is most likely the reason why only one of the BRD4 actives showed
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Figure 8. Molecular dynamics analysis Receptor ligand poses as obtained by docking simulations of 2870
in (A) BRD4(1) and (B) EGFR TKD and primary receptor ligand interactions (H-bonds, hydrophobic,
ionic, water bridges) of 2870 for the duration of the MD simulations with (C) BRD4(1) and (D) EGFR
TKD respectively. The top panel in (C,D) shows the total number of specific contacts the protein makes
with the ligand over the course of the trajectory. The bottom panel shows which residues interact with the
ligand in each trajectory over time. Some residues make more than one specific contact with the ligand,
which is represented by a darker shade of orange, according to the scale to the right of the plot.
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significant EGFR activity. It also suggests that we should be able to identify additional dual actives if
we tested a larger number of top ranking compounds. Our high-throughput computational screening
pipeline balanced predicted EGFR activity with favorable physicochemical properties before applying the
BRD4(1) structure-based models. In this way we prioritized novel lead-like EGFR inhibitors among mil-
lions of compounds and then selecting the most likely BRD4(1) binders. This was a significant challenge,
because we were looking at the intersection of two orthogonal predictions. Several known inhibitors of
EGEFR were included in our BRD4 consensus docking protocol, however, these compounds did not rank
highly, supporting our focus on the discovery of novel compounds. We only tested for EGFR activity
those compounds that we had already confirmed as BRD4(1) binders.

Although other groups had performed virtual screens to discover novel EGFR inhibitors® as well
as BRD4 interacting small molecules®, our approach is the first to look for multi-target dual inhibitors
using a combination of ligand and structure-based models for each target. As a result of our compu-
tational pipeline, we ultimately selected and tested 24 compounds from over six million. We identified
several novel BRD4 binders and one novel dual EGFR-BRD4 inhibitor, 2870, a first-in class compound.
2870 is a potent EGFR inhibitor (ICs;: 44nM) and a relatively weak ERBB2, ERBB4 and BRD4 inhibi-
tor (ICsy: 8.73, 24.2 and 9.02 uM respectively). To better understand molecular binding interactions of
2870 in BRD4 and EGFR and to facilitate future rational optimization, we performed extensive all atom,
explicit water MD simulations of 2870 in BRD4(1) and EGFR TKD. The 200 ns MD simulation of the
predicted BRD4(1)-2870 complex appeared consistent with the more modest potency observed in the
biochemical assays (compared to EGFR). The observed interactions throughout the duration of the sim-
ulation were important acetyl-lysine interaction motifs for BRD4(1). The initial docking pose shows pri-
mary interaction with asparagine 140, a conserved direct acetyl-lysine binding residue, through a direct
hydrogen bond with the pyrimidine nitrogen at position 8 and 10 (Fig. 8a). Binding of 2870 appeared to
switch between different interactions, but stabilize half way though the simulation with key interactions
including asparagine 140, the chief acetyl-lysine binding residue, and isoleucine 146, characterized as
the “gatekeeper” residue for binding of BRD4 to acetylated histones, indicating that the molecule keeps
the residue in an occupied conformation (Fig. 8c). Structural analysis of BRD4(1) at atomic resolution
indicates that isoleucine 146 adopts a closed conformation in the absence of binding'. 2870 primarily
interacts at the BC loop towards helix C. Its 2-aryloxyethylamino moiety off the quinazoline scaffold is
partially solvent exposed. Similarly the methoxy substituents do not appear to have a strong interaction
in the binding site.

In contrast to BRD4(1), 2870 binds rigidly in the ATP binding region of EGFR. The binding ori-
entation is the same as Lapatinib, Erlotinib, and other 4-amino-quanzoline inhibitors (Supplementary
Figure 6). The quinazoline scaffold binds to the hinge loop and the 2-aryloxyethylamino-4-quinazoline
substituent directed towards the kinase gatekeeper residue and C helix; the alkoxy moieties towards the
D helix adjacent to the hinge loop (Fig. 8b,d). Therefore, 2870 is a type I kinase inhibitor binding in the
DFG-in conformation of the activation loop.

Interestingly, the 4-amino-quinazoline motif interacts with BRD4 Asn 140 and the EGFR hinge region,
thereby rationalizing its dual activity. 2870 binds EGFR with an ICy, of 0.044 M as compared to 9.02 uM
for BRD4. This difference in binding affinity can be rationalized based on the trajectories obtained from
the MD simulations of 2870 for each target. The molecular interactions analyzed in the MD simulations
suggest possible positions for chemical optimization of 2870 to develop derivatives with more equal
BRD4 and EGFR potency, which would likely increase compound efficacy. These include the alkoxy
residues and the 4-alkyl-/aryl-amino substituents. Although the 4-amino-quanzoline is a well-known
EGEFR scaffold, all drugs have a 4-aryl substituent, in contrast to 2870, which is alkyl-amino substituted
(2-fluorophenoxy-2-ethyl-amino). This allows more flexibility, but still enables the formation of aromatic
interactions in the kinase binding site, and may explain its dual EGFR-BRD4 activity. This significant
difference is also reflected in its low Tanimoto similarity to known EGFR kinase drugs. Among known
EGFR inhibitors, 2870 is least dissimilar to Erlotinib (0.446), compared to Lapatinib (0.389), Gefitinib
(0.261), and AEE788 (0.239). 2870 shares even less chemical similarity to any known BRD4(1) binder
with the closest compound being 0.3 similar. 2870 can therefore be considered a novel multi-target
inhibitor with respect to both BRD4 and EGFR.

Our results do not support or reject the hypothesis that known kinase inhibitors may be privileged
BET binders. We are currently performing analyses to investigate this further. In our approach we have
demonstrated that it is possible to computationally develop such dual inhibitor compounds. We are cur-
rently extending our screening approach to study other important target combinations and we believe
that our in-silico approach can be generalized to discover a variety of novel multitarget kinase BET
inhibitors and chemotypes.

Novel compounds with specific polypharmacology have great potential as cancer therapeutics with
increased clinical efficacy. Orthogonal multitargeted therapies are needed to counteract compensatory
mechanisms present in tumor cell populations, such as the adaptive bypass response, which often leads
to drug resistance and clonal evolution of the cancer. Single multi-target compounds have advantages
over combination therapies, including reduced risk of drug-drug interaction and toxicity, improved
efficacy, regulatory approval and intellectual property. Here we demonstrated a proof of concept study
implementing a pipeline to identify dual EGFR and BRD4 inhibitors. We discovered the first in class
dual multitarget EGFR and BRD4 inhibitor and predict that many dual kinase-BET inhibitors can be
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identified using this approach. We hope this will contribute to developing novel clinical drug leads for
the treatment of cancers resistant to current treatment regimens.

Methods

Analysis of transcriptional response signatures. LINCS L1000 transcriptional response signatures
were generated at the Broad institute and are available via LINCSCloud (http://www.lincscloud.org/)
and via the BD2K LINCS Data Coordination and Integration Center (http://bd2k-lincs.org/). We had
previously processed all LINCS signatures in the LINCS Information FrameWork (LIFE, http://life.ccs.
miami.edu/) and only used L1000 signatures with the annotation “is gold”, indicating the highest qual-
ity of aggregate data. Data was analyzed by cell lines, compounds and other metadata and the largest
available consistent dataset was selected, namely MCF?7 cells at 10 xM compound concentration after 24
hours. All pairwise Pearson correlation coefficients were computed from the L1000 z-score signatures
for all 2482 drug perturbations. Data were processed and reformatted using Pipeline Pilot 8.0 (Accelrys)
components. Small molecule perturbagens were annotated with their known targets extracted from the
ChEMBL 20 database after mapping LINCS compounds to ChEMBL IDs. These mappings are now also
available via UniChem (https://www.ebi.ac.uk/unichem/). Twelve EGFR inhibitors and four BRD4 bind-
ers were identified. They are all well annotated, known nanomolar activity compounds (Supplementary
Table 1). Welch two sample t-test was performed to compare the population of EGFR inhibitors, BRD4
binders, the intersection of BRD4 and EGFR inhibitors (i.e. all pairs of BRD4 and EGFR, but not BRD4-
BRD4 or EGFR-EGFR compounds) and all Other compounds based on their signature Pearson correla-
tion coeflicients (R?) using the program R (http://www.r-project.org/). Significant p-values in the range
of 1073 to 10> were obtained when comparing EGFR to Other, EGFR to BRD4, BRD4 to Other as well
as the intersection of EGFR-BRD4 to Other (Fig. 1). Lastly, after the structure based modeling was com-
pleted, all predicted compounds used in our docking study were compared to compounds used in LINCS
assays by Tanimoto chemical similarity using Pipeline Pilot (Supplementary Figure 5). 27 compounds
used in our docking study have been used in LINCS assays with most other compounds sharing high
chemical similarity.

Kinase machine learning classification models. Laplacien-modified Naive Bayesian classifiers
using topological fingerprints were built and validated as previously described?!. However, by contrast
to our initial report, we used over twice the amount of data to train the classifiers; the Q2 2013 data
release of the Kinase Knowledge Base (KKB; Eidogen-Sertanty; http://eidogen.com/) was standardized
and processed in the same manner as described. Using extended connectivity fingerprints (ECFP4), two
models for EGFR were built based on a total of 591,744 unique kinase compounds: one with 3,058 actives
defined as pIC,y/pK;>7 and another with 4,785 actives of pICs,/pK;> 6. Both models have excellent
ROC scores of 0.98 to 0.99 based on 50/50 training/test set and estimated based on the leave-one-out
cross validations (Supplementary Figure 1). The enrichment factors among 1% of the dataset are 78 and
66, respectively. This is close to the upper bound (100) for the given subset (1%) and the ratio of actives
versus total compounds.

BRD4 docking models. We used the Schrodinger 2014.2 software suite for structure-based manip-
ulations and simulations. Seven BRD4 co-crystal structures were selected from the Protein Data Bank
(PDB) from 65 available structures (January 2014). Three crystal structures for the extensively character-
ized BRD4 inhibitors namely JQ1 (3MXF), I-BET151 (3ZYU) and I-BET762 (3P50) were chosen. Other
PDB crystal structures included 4HXS, 4C67, 4LR6 and 4LYW. Overall, the selection criteria included
the atomic resolution of the X-ray crystal structure, diversity in the co-crystal ligand scaffold and ligand
interactions in the binding site. From the seven crystal structures chosen, we identified conserved waters
found in/around the ligand binding sites, in order to incorporate likely protein-ligand water bridges into
our models. To do this we aligned all BRD4 crystal structures and determined which waters fell within
5A of the active site. We then kept these waters specifically in the preparation process of two out of
the seven crystal structures, in addition to those that we had already prepared. This amounted to nine
prepared crystal structures with which to produce docking models.

BRD4 protein structures were pre-processed using the protein preparation workflow in Maestro 9.5
to assign bond orders and refine the structure including hydrogen bond optimization and constrained
minimization. Where needed, missing side chains were added using Schrodinger Prime. For each struc-
ture, one protein chain with the co-crystal ligand was kept, and water molecules were deleted beyond
5A from heteroatom groups. In addition, the internal hydrogen bond network was optimized, followed
by constrained energy minimization. For the resulting nine structure representations, docking grids were
generated around the co-crystal binding sites using Schrodinger Glide in the default settings. Re-docking
each co-crystal ligand into its corresponding structure validated models; in each case the co-crystal pose
was reproduced with RMSD values < 1A

BRD4 small molecule activity data and decoy datasets. The activity data for the known BRD4
inhibitors was extracted from the ChEMBL18 database (May 7, 2014) and in addition curated from
the recent literature'®1%?-3, Only the compounds with activity data (IC,/K,/K;) were used for further
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processing. Data were combined and the duplicates were removed. Chemical structures were stand-
ardized including protonation states, canonical tautomer, salt removal and proper stereochemical and
geometric configuration using Pipeline Pilot 8.0 (Accelrys) and unique IDs were assigned. Activity data
was p-transformed (-Log,,) and aggregated by unique compounds using the median activity value for
compounds that had multiple activity values available.

To estimate enrichment and determine thresholds for docking score significance, the 246 unique
BRD4 inhibitors were submitted for generating the decoy sets from the Directory of Useful Decoys,
Enhanced (DUD-E)*. This generated 50-100 decoy compounds per submitted ligand SMILES. The 246
original ligands and the corresponding 15,250 decoys compounds (15,496 compounds total) were then
pre-processed for docking.

Ensemble docking protocol and data fusion. Ligand Preparation. Ionization states, tautomeric
forms, and 3D conformations for 15,496 SMILES (246 known BRD4 ligands and 15,250 decoy com-
pounds) were generated using LigPrep (Schrodinger 2014.2). The default conditions were maintained;
except for the ionization states which were generated at the target pH of 7+ 2 using Epik including the
original state. The resulting 3D ligand representations were exported as structure data files and unique
IDs were assigned based on unique canonical structures to facilitate post-docking hierarchical data
fusion.

Docking protocol.  Ligand representations obtained via LigPrep for all (BRD4 known active and decoy)
compounds were docked against all 9 prepared BRD4(1) models using Glide (Schrodinger 2014.2) in
standard precision (SP) with the default settings, except writing out at most 5 poses per ligand representa-
tion and including 25 poses per ligand for post-docking minimization. All docking results were exported
from Maestro 9.5 as delimited text files. The docking scores were aggregated hierarchically at three levels,
at each level generating average and top docking scores as follows: (i) for each unique ligand representa-
tion structure, the scores of all corresponding docking poses were aggregated; (ii) pose-aggregate scores
of unique ligand representations (generated in LigPrep) were aggregated by unique (original) compound
structure (across ionization states and tautomers); (iii) aggregate compound scores were combined across
all protein structures. At the ligand representation level, we considered top and average top 3 and average
top 5 pose scores, at the compound level, the top and average of all corresponding ligand representations,
and at the protein level, the top and average top 3 and top 5 scores, giving a total of 18 aggregation meth-
ods (Supplementary Figure 2). Based on model evaluation results for all aggregation methods, for the
final results we used the top scores obtained across all levels; for each ligand structure this corresponds
to the best pose for the best ligand representation in the best protein-docking model.

Evaluation and characterization of predictions. 'The docking method was evaluated by the receiver oper-
ating characteristic (ROC), enrichment factors (EF) and by correlation of aggregate docking scores and
activity data using the known BRD4 inhibitors and the large decoy dataset (described above). The aggre-
gate docking scores (BRD4_GlideSP_Topl_Top_Topl) exhibited the best overall relation to reported
activity. The obtained ROC curves are shown in Fig. 2. The sensitivity, specificity, and accuracy for
different activity and docking score cutoffs and EF at 0.1%, 1% and 20% subsets are shown in (Table 1).
Sensitivity (S) is defined as true positive rate (TPR), specificity (SP) is true negative rate (TNR) and accu-
racy is the overall correct prediction rate [(TP 4+ TN)/N]. The ROC is [S/(1—SP)], i.e. TPR over FPR. EF
is [TP(subset)/n(subset)]/[P(total)/n(total)], i.e. the ratio of true positives detected in the subset divided
by the fraction of overall (total) positives. The known BRD4 inhibitors were clustered by maximum com-
mon substructure using ChemAxon JCluster (MultiMCS)*”*® and also the partitioning algorithm with
topological Fingerprints as implemented in Pipeline Pilot 8.0. Correlation coefficients were computed for
aggregate docking scores versus median activity for all clusters.

Virtual screening workflow to identify dual EGFR-BRD4 inhibitors. EGFR Laplacien-modified
Naive Baysian classification models were applied to the eMolecules (http://emolecules.com/) database
of over 6 million commercially available compounds (downloaded in December 2013), which were
standardized in the same manner as the small molecule kinase inhibitor model training sets, specifi-
cally removing salts and other addends, standardizing stereoisomers and geometric isomers, generat-
ing unique tautomers, physiological ionization states and creating canonical SMILES representations.
Physicochemical properties were calculated for all compounds using Pipeline Pilot 8.0 (Accelrys). For the
selection of physicochemically favorable compounds, we only considered those predicted as EGFR active
(after minimizing false positives and false negatives) in the both the EGFR (pIC,y/pK;> 6) and EGFR
(pICs/pK; > 7 models). To sample most suitable compounds, we selected compounds with very high pre-
dicted probability of EGFR activity (EstPGood) and less stringent physicochemical property criteria, but
also compounds with relaxed EstPGood cutoffs and more strict physicochemical property filters. Overall,
the following parameters were used: EGFR (pICsy/pK;> 6 predicted probability (EstPGood)> 0.05;
molecular weight <500; hydrogen bond acceptors < 10; hydrogen bond donors < 5; rotatable bonds < 10;
molecular polar solvent accessible surface area <250; ALogP <5. These criteria yielded 908 compounds.
Ligand preparation was performed on all 908 compounds, creating 2,477 ligand representations to be
used for docking. Docking was performed using all 9 models followed by the aggregation/data fusion
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of docking scores and analysis using TIBCO Spotfire. Based on model evaluation (enrichment) using
known actives and large decoy sets (as described above), statistical thresholds to select likely actives were
established at z-scores of —2 and —3 of the predicted active docked compound distribution. After rank
ordering compounds, additional selection criteria included EstPGood of the EGFR classifiers, commer-
cial provider availability, physicochemical properties and chemical diversity. Upon final manual review
and selection among 108 compounds, 47 of the compounds were found commercially available from the
vendor Enamine, LLC, 25 were selected and 24 were ultimately purchased and received.

EGFR structure-based models and docking. Protein preparation, docking protocol and model
validation for EGFR were performed in the same manner as for BRD4 described above. Two crystal
structures (1XKK and 1M17) were chosen from 132 available based on the highest chemical similarity of
their co-crystal ligand to the dual EGFR-BRD4 compound 2870. Three other co-crystal ligands were also
used in the docking study along with 2870 to confirm reproducibility of known ligand binding poses.

Molecular dynamics simulations. All atom (OPLS force field) explicit water molecular dynamics
simulations were performed using the Desmond 2014.2 software suite via Maestro 9.8%. The Desmond
software automatically sets up the systems (adjust charges, adds water molecules) and performs sev-
eral rounds of minimization and short simulations before the production runs. Molecular dynamics
(MD) was run on the Pegasus 2 cluster from the Center for Computational Science at the University of
Miami (http://ccs.miami.edu/hpc/) using 48 processors and completed in 53 hours for the 50ns EGFR
simulation and 198 hours for the 200ns BRD4 simulation. Simulation analysis was performed using the
Desmond trajectory analysis software.

BRD4(1) biochemical alphascreen assay. The BRD4(1) alpha screen assay was performed with
a pre-acetylated Biotin-Histone 4 Peptide [H4K5/8/12/16(Ac)] 1 - 21 (AnaSpec #64989-025, 0.25 mg).
A 200 uM stock was made and stored at —80°C. BRD4-BD1 (49-170, BPS Bio #31042) was stored at
—80°C at a concentration of 50 uM. All compounds used in assays were kept in a 10 mM stock at
—80°C, with I-BET151 being used as a control. The assay buffer contained 50 mM HEPES, 100 mM
NaCl, and 0.1% BSA at a pH of 7.4, and was stored at 4°C. 10% CHAPS (Sigma C3023) was added to
the assay buffer before each experiment and was stored at room temperature.

Before use, assay buffer was equilibrated to room temperature and supplemented with 0.05% CHAPS.
3X His-BRD4-BD1 was diluted in assay buffer to 600nM with a final concentration of 200nM in a
12 pl reaction volume. 4 il per well of 3X His-BRD4-BD1 was added to an OptiPlate-384 (Perkin Elmer
#6007290) covered with Top Seal-A Film (Perkin Elmer #6005250) and pulsed at 900 x g. 3X BRD
Inhibitors or DMSO vehicle was prepared in Assay Buffer starting at 300 M and diluting 3X to 46 nM.
4 pl of buffer (positive control), 3X DMSO Vehicle, or 3X BRD Inhibitor (I-BET151 as control) were
added to each well, sealed with Top Seal-A film and pulsed at 900 x g. The plate was then incubated at
room temperature for 30 minutes. 3X Biotin-H4K4Ac was prepared by diluting stock in Assay Buffer
to 600nM, with a final concentration of 200nM in a 12 ul reaction volume. 4 ul of Biotin-H4K4Ac was
added per well, sealed and pulsed at 900 x g. The plate was then incubated at room temperature for
another 30 minutes. AlphaLISA Nickel Chelate Acceptor Beads (Perkin Elmer #1547780, 5 mg/ml, 4°C)
and AlphaScreen Streptavidin Donor Beads (Perkin Elmer #6760002, 5 mg/ml, 4°C) were prepared at
2.5X by diluting in Assay Buffer to 25 ug/ml with a final concentration of each bead equaling 10 ;ig/ml
in a 20 ul reaction volume. 8 uul per well of Donor and Acceptor beads were added in the dark to each
well, sealed, wrapped with foil to protect from light, and pulsed at 900 x g. The plate was then incubated
at room temperature for 60 minutes and read on an EnVision instrument using Alpha Mode (680 exci-
tiation/615 emission/read signal). Dose response curves were obtained and interpreted using GraphPad
Prism software for curve fitting to obtain IC;, values. To confirm results, a Perkin Elmer Tru-Hits counter
screen was performed with the same assay system to determine if any compounds were interacting with
the assay components, allowing for the determination of false positives.

Differential scanning fluorimetry. The inhibitory activity of compound Z118332870 (2870) against
BRD4(1) was assessed by DSF using a StepOnePlus Real-Time PCR system (Applied Biosystems).
Purified BRD4(1) (4 uM final concentration; 10 mM HEPES (pH 7.5), 100 mM NaCl, and 1 mM DTT)
was assayed, in triplicates, in a 96-well plate. Compound was added to a final concentration of 100 uM
and 2% DMSO. Protein Thermal Shift Dye (1:8000; Applied Biosystems) was used as the fluorescent
probe and fluorescence was measured using the ROX Reporter channel (620 nm). Protein stability was
investigated by programing the thermocycler to increase the temperature from 25°C to 99°C using
0.2°C increments and 10 second incubations per increment. The inflection point of the transition curve/
melting temperature (T,,) was calculated using the Boltzmann equation within the Protein Thermal
Shift Software (v.1.1) (Applied Biosystems). The AT, was calculated by using DMSO control wells as a
reference.

EGFR kinase activity enzyme assay. A radioisotope filter binding method was used in the EGFR
kinase hotspot assay, performed by the Reaction Biology Corporation, LLC. The base reaction buffer was
composed of 20 mM HEPES (pH 7.5); 10 mM MgCl,, 1 mM EGTA, 0.02% Brij35, 0.02 mg/mL BSA,
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0.1 mM Na;VO,, 2 mM DTT, and 1% DMSO. The substrate was freshly prepared using the base reac-
tion buffer. Kinase was added into the substrate solution at a concentration of 10 uM and gently mixed.
Compounds were then added into the kinase reaction mixture. At this point, the **P-ATP was added
into the reaction mixture to initiate the reaction. The reaction was incubated for 120 minutes at room
temperature. After completion, reactions were spotted onto P81 ion exchange paper (Whatman #3698-
915). Filters were then washed extensively in 0.75% Phosphoric acid and a scintillation counter was used
to quantify the amount of radioactivity on the filter.
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