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Stability of similarity 
measurements for bipartite 
networks
Jian-Guo Liu1,2, Lei Hou2,3, Xue Pan2,3, Qiang Guo2 & Tao Zhou4

Similarity is a fundamental measure in network analyses and machine learning algorithms, with wide 
applications ranging from personalized recommendation to socio-economic dynamics. We argue that an 
effective similarity measurement should guarantee the stability even under some information loss. With 
six bipartite networks, we investigate the stabilities of fifteen similarity measurements by comparing 
the similarity matrixes of two data samples which are randomly divided from original data sets. Results 
show that, the fifteen measurements can be well classified into three clusters according to their 
stabilities, and measurements in the same cluster have similar mathematical definitions. In addition, 
we develop a top-n-stability method for personalized recommendation, and find that the unstable 
similarities would recommend false information to users, and the performance of recommendation 
would be largely improved by using stable similarity measurements. This work provides a novel 
dimension to analyze and evaluate similarity measurements, which can further find applications in link 
prediction, personalized recommendation, clustering algorithms, community detection and so on.

Connections are everywhere and can be observed between everything in our world1,2, such as the connections 
between the online users and their rated or selected objects3,4 and the connections between neurons in the neural 
networks5,6. To characterize systems consisting of connections in which objects are represented as nodes and con-
nections are represented as links, complex networks have been widely used in the last decade to study the relations 
between different objects and the structure of those kinds of systems7–9.

However, in most real complex networks, every pair of nodes has some specific relations even there is no link 
between them. For example, citation networks consist of papers. If one paper cited another, there would be a link 
between them10. Besides citing relations, other potential relations may exist when the papers have same authors 
or cited same papers and so on11. Generally, similarity describes the connections between different objects’ prop-
erties, which is the most used method to evaluate such relations. And the similarity has become an important 
measurement with great significance for both theoretical researches (such as biological and physical science) and 
practical applications (such as the e-commerce and social service). For example, in biological analysis, evaluat-
ing the similarity of genes’ expression profile, one may identify similar regulations and the control processes of 
genes12,13. Co-expression networks may also be established according to the similarities between genes14,15. While 
protein-protein or metabolic interactions can only be verified by costly experiments and most of the interactions 
are still unknown, similarity-based link prediction method16,17 could largely help identify the most likely pair of 
interacting proteins18–20. In addition, the similarity measurements have also found its applications in object clus-
tering21, community detecting22,23, machine learning24,25 and socio-economic dynamics26. As to more practical 
applications, in term of the similarities, recommendation systems27,28 evaluate correlations between objects such 
as movies, commodities, books and so on, and accordingly make recommendations to users.

So far, dozens of similarity measurements have been developed. However, with different data, similarity meas-
urements generally have very different performances. Even with different parts of a same data, the results may 
be also different. Particularly in the bipartite networks, the object similarity is determined by their natural prop-
erties, and thus, similarity should be steadfast for a definite pair of objects. On the other hand, the networks we 
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investigated are mapped incompletely, which is always evolving, or contain false positives and negatives29. In the 
user-object bipartite networks, since the natural properties of the objects are unchangeable, a good similarity 
measurement should always return the same values for each pair of objects. To explore the stability problem of 
object similarity for bipartite networks, fifteen similarity measurements will be analyzed and studied in this paper. 
Firstly, we will report the influence of data amount on the stabilities of fifteen similarity measurements. Secondly, 
the comparison and classification of the fifteen similarity measurements will be analyzed. Finally, we will explore 
the effect of the object similarity stability on the recommendation.

Similarity Measurements
In many online systems, objects usually could get ratings from different users. To this kind of context, one can 
use the Cosine Index (COS) or Pearson Coefficient (PC) to measure the object similarity. When the ratings are 
unavailable, similarity can also be defined from the structure of the historical data, that is, two objects are sim-
ilar if they are connected with many same users. The simplest such method is Common Neighbour (CN), where 
the similarity between two objects are directly given by the number of same neighbours who have connections 
with them. Considering the degree information of two objects, variations of the CN index have been proposed, 
including the Salton Index (SAL)30, Jaccard Index (JAC)31, Sørensen Index (SOR)32, Hub Promoted Index (HPI)33, 
Hub Depressed Index (HDI) and Leicht-Holme-Newman Index (LHN)34 indices. Instead of the number of the same 
neighbours in the CN index, the Adamic-Adar Index (AA)35 and Resource Allocation Index (RA)36 indices were 
presented, regarding the object similarity as the summation of their common neighbours’ degrees. According to 
the preferential attachment process8, the Preferential Attachment Index (PA) was also presented. Furthermore, using 
the concepts from physics, the Mass Diffusion (MD)37, Heat Conduction (HC)38,39 and Improved Heat Conduction 
(IHC)40 methods were also investigated. The mathematical definitions of those similarity measurements can be 
found in the Method Section. Generally speaking, the value of similarity is relatively high (low) if the objects are 
very similar (different). With these fifteen similarity measurements, we investigate the similarity stability for the 
user-object bipartite networks.

Data
Six different data sets are applied in this paper to study the stability of similarity measurements, differing both in 
the subject matter and data sparsity, as shown in Table 1. These data sets are usually modelled as the user-object 
bipartite networks and widely used to investigate the performance of the recommendation algorithms41–43. The 
MovieLens and Netflix data sets are movie Web Sites in which users could watch and rate movies. The Amazon data 
set is an e-commerce system in which users buy commodities. The Last.FM data set is a music Web site allowing 
users to collect different artists’ music. The Epinions data set allows users writing reviews and on the other hand 
reading others’ reviews. The Del.icio.us data set is a bookmark Web Site in which users collect and share bookmarks 
they interested in.

Similarity Stability
Although lots of object similarity measurements have been presented, we could not know the exact object similarity. 
Thus, to examine the stability of those measurements, we divide the data set into two samples to compare the 
similarity matrixes calculated from those two samples for each measurement. The data-dividing method can be 
described as follow: Every record will get a random number p from a uniform distribution ranging from 0 to 1, 
and this record belongs to the first sample if η≤p  and belongs to the second sample if η> −p 1 , where η can 
be regarded as a data amount parameter and η< ≤ .0 0 5. With this method, those two samples would have no 
overlaps, which means, they are totally different parts of the data set. For a specific pair of objects α and β, we use 
αβs1  to denote their similarity in the first sample and αβs2  to denote that in the second sample. Thus, if a similarity 

measurement can give stable evaluation of the object similarity, there would be =αβ αβs s1 2 . Figure 1 reports the 
distributions of similarities of two samples for each of the fifteen similarity measurements in MovieLens data set. 
The dots would distribute near the diagonal if the measurement can give stable evaluation of object similarity. The 
PA index presents the most concentrated distribution. The reason lies in the fact that the PA index only considers 
the neighbour node popularity. Popular objects of a data sample are in general also popular in another data sample, 
and thus the object similarity is stable. Other measurements’ results are not so concentrated especially for pairs of 
objects with low-similarity pairs of objects. Results in Fig. 1 indicate that, when the data is changed, a same pair 

Dataset Subject matter NUM. of users NUM. of objects NUM. of links Sparsity

MovieLens Movie 5547 5850 698054 2.15 ×  10−2

Netflix Movie 8608 5081 419247 9.59 ×  10−3

Amazon Commodity 645056 99622 2036091 3.17 ×  10−5

Last.FM Artist 1892 17632 92834 2.78 ×  10−3

Epinions Reviews 28090 30073 422085 5.00 ×  10−4

Del.cioi.us Bookmark 1861 1860 15328 4.43 ×  10−3

Table 1.   Properties of the utilized data sets. The sparsity is the deviation between existed links and possible 
links, i.e. T/(M ⋅  N), where T, M, N are the number of links, objects and users respectively. Subject matters of 
those data sets are definite objects whose properties are unchangeable except Last.FM. The subjects of Last.FM 
are artists. However, the artists’ music have definite contains and properties. Thus, the artists in Last.FM could 
also be regarded as objects.
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of objects may be evaluated as different similarity levels and thus, the stability problem indeed exists in most 
similarity measurements.

The similarity values calculated by different measurements distribute in different ranges, and thus we make a 
simple normalization to compare the measurement stability. Suppose that s is the average value of similarities that 
= ∑ /( ( − ))αβ αβs s M M 1  where M is the number of objects which have at least one record in the corresponding 

sample, the normalization is = /αβ αβs s s . Specifically, the similarities of the PC index distribute in the range 
− ,[ 1 1], which may probably leads s to be 0. Hence, we make the normalization as = ( + )/( + )αβ αβs s s1 1  for 

the PC index. Henceforth, the similarities are all been normalized before used. To qualify the stability of object 
similarity, we define three metrics:

(1)	 The average bias μ is used to describe the average level of similarity difference between two similarity matrixes 
from two samples, and it reads

µ
δ

=
∑

( − )
,

( )
αβ αβ

M M 1 1

where δαβ  is the bias of similarities between objects α and β from two samples as shown in Fig. 1(a), i.e. 
δ = −αβ αβ αβs s1 2 . High value of average bias means, on average, the same pair of objects is evaluated as different 
similarities when the data is changed. Therefore, the more stable the similarity measurement is, the lower value μ 
would be.
(2)	 The standard deviation of bias σ reads

σ
δ µ

=
∑ ( − )

( − )
.

( )
αβ αβ

M M 1 2

2

The deviation σ can measure the difference of susceptibility between different pairs of objects against the data 
change. High values of the deviation σ mean that similarities between some pairs of objects may be quite unstable. 
On the other hand, low values of σ indicates that, each pair of objects has similar unstable level and the bias μ may 
be caused by the coincident entirety changes of each pair of object similarities.
(3)	 The Pearson coefficient ρ reads

Figure 1.  Typical examples of the comparison between object similarities αβs1  and αβs2  of the MovieLens 
data set for fifteen similarity measurements. When dividing the data set, we set η = .0 5, i.e. 50% ratings are 
divided into the first sample and the others are divided into the second one. For each calculation, we randomly 
select 104 pairs of objects’ similarities of two samples to show in the figure. Thus, there are 104 dots in each 
subplot, each represents a pair of objects. The dots would locate on the diagonal if the similarities in two samples 
=αβ αβs s1 2 . Consequently, the more stable the similarity measurement is, the more concentrated the dots would 

distribute around the diagonal.
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where s1 and s2 are the average value of similarity over every pair of objects for two samples respectively, and v1 and 
v2 are the standard variance of similarities for two samples respectively. In general, the value of Pearson coefficient 
ρ ranging from − 1 to 1 measures the coherence of two similarity matrixes calculated by two samples. The upper 
limit of Pearson coefficient ρ =  1 means two similarity matrixes are totally coherent and the corresponding simi-
larity measurement is totally stable.

For each similarity measurement, we calculate the similarity for two data samples with different data amount 
parameter η. The results of average bias μ, standard deviation of bias σ and the Pearson coefficient ρ of the 
MovieLens, Amazon, Last.FM and Epinions data sets are reported in Fig. 2 (Results of Netflix and Del.icio.us 
datasets can be found in the Supplementary Information). One can easily find that, the PA index is the most stable 
measurement regardless of the data amount η. Even with small size of data, the PA index could give stable evaluation 
of the object similarity. As the data amount increases, the average biases μ and the standard deviations of bias σ 
generally decrease. It can be observed that for both the average bias μ and deviation σ, the CN, AA and RA indices 
have similar decay patterns. When the data amount is small η( < . )0 1  the average bias μ of the CN, AA, RA indices 
are almost the highest, and with the increase of η, the average bias μ rapidly decreases which means they are sen-
sitive to the data amount. Another dynamic cluster consisting of the COS, SAL, JAC, SOR, HPI, HDI indices seem 
to be insensitive. Although the average bias μ and deviation σ also decrease with the increment of data, the decays 
are much slower than that of the former cluster (the CN, AA, RA indices). A special measurement refers to the 
LHN index, which has no apparent dynamic against the data amount η. Same with the results of average bias μ 
and deviation σ, the Pearson coefficient ρ of the PA index is the highest and larger than 0.9 even with the smallest 

Figure 2.  Average bias μ, standard deviation of bias σ and the Pearson coefficient ρ against the data 
amount parameter η for the MovieLens, Amazon, Last.FM and Epinions data sets respectively. Each data 
point is averaged over 20 independent experiments, i.e., for each level of data amount parameter η, we randomly 
divide the data for 20 times and calculate μ, σ and ρ of each time. Note that, there is only selecting information 
without ratings in the Last.FM data set. Thus, the COS and PC indices could not be performed in the Last.FM 
data set. As the data becomes more and more abundant, the stability of object similarity would relatively be 
better. However, many measurements still could not give stable evaluation of object similarity.
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data amount η( = . )0 05 . As to the CN, AA, RA indices, the Pearson coefficients ρ are also sensitive, which is similar 
to the average bias μ and deviation σ. As the data amount η increases, the Pearson coefficient ρ of the CN, AA, RA 
indices rapidly increase to quite high levels. Other measurements’ Pearson coefficients ρ, however, increase very 
slowly with the data amount and are in general less than 0.2 even when all the data η( = . )0 5  is used. Especially in 
Amazon which is a very sparse (sparsity is . × )−3 17 10 5  data set, the Pearson coefficients ρ of most measurements 
are less than 0.03. This result indicates that, for most similarity measurements, the similarity matrixes calculated 
from different data samples could have no apparent coherence. Overall, more data could make it more stable for 
most of the measurements especially the CN, AA and RA indices.

To get deeper insight of the comparison and the classification of these similarity measurements, we analyze the 
results of the average bias μ and standard deviation σ when all of the data is used η( = . )0 5  which is shown in Fig. 3 
(Results of the Netflix and Del.icio.us data sets can be found in the Supplementary Information). Using the average 
bias μ and dispersion σ µ/  as two dimensions, we can get the µ σ−  location map for each data set. Surprisingly, 
one can find that, these fifteen similarity measurements could be well classified from the perspective of similarity 
stability. Except four measurements namely the PA, PC, LHN and IHC indices, the others could be classified into 
three clusters. Measurements in the same cluster are similar in both mathematical forms and original considera-
tions. The first cluster consists three measurements namely the CN, AA and RA indices, all of which only take into 
account the information of common neighbours of two target objects. Besides the CN index which considers the 
number of common neighbours, the AA and RA indices calculate the total number weighted by / ( )k1 log u  and 
/k1 u respectively where ku is the degree of the common neighbour u of the two target objects. The second cluster 

consists of six measurements namely the COS, SAL, JAC, SOR, HPI and HDI indices. Except the COS index, the 
other five measurements are all variations of the CN index. However, another variation of the CN index, namely 
the LHN index, locates outside the second cluster. The reason may be that, when considering the degree information 
of two target objects, the LHN index makes the degrees of two objects multiplied, i.e. α βk k , thus the degree infor-
mation is quadratic in the LHN index. Unlike the LHN index, other variations’ degree information is not quadratic, 
such as α βk k  of the SAL index, +α βk k  of the SOR index, ( , )α βk kmax  of the HDI index and so on (See the 
Method Section for detailed mathematical definitions of these measurements). The third cluster consists the MD 
and HC indices which consider the degree information of both the target objects and their common neighbours. 
Another similar point is that, both the MD and HC indices are designed based on the spreading process on bipartite 
networks. Although the basic considerations are different, mathematical definitions of the MD and HC indices 
are very similar which leads to =αβ βαs sMD HC. Overall, according to the stability of the object similarity, various sim-
ilarity measurements could be well classified into three clusters. In fact, the classification can also be observed in 
Fig. 2, in which measurements in the same cluster always have same dynamical patterns against the data amount 
parameter η.

Results on the Artificial Data
To explore whether the stability pattern is due to the property of the data set or the nature of each measurement, 
we present two methods to test the similarity stability on the reshuffled and randomly generated data sets. 1) In 
the first method, we reshuffle the links between users and objects from the empirical data sets. At each step, we 

Figure 3.  The μ–σ location map with data amount parameter η = 0.5. On the location map, a measurement 
locating on the left side means the similarities of objects have little change at average, and the bottom means the 
similarities of each pair of objects have similar changes. Overall, a stable measurement generally would locate 
on the left bottom of the µ σ−  location map.
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randomly select two records, say − −u o r1 1 1 and − −u o r2 2 2, and exchange two objects o1 and o2 or two ratings 
r1 and r2 with equal probabilities. After enough steps, the data set would be reshuffled greatly. In our case, we 
perform 10T steps for reshuffles, where T is the number of records in the corresponding empirical data set. 2) The 
second method is randomly generated data sets. Initially, we suppose there is an empty bipartite network with M 
objects and N users. Then we randomly generate T links between users and objects. At each step, we randomly 
select an object and a user, where the selection probabilities of each object and user are 
= ( + )/∑ ( + )γ γ

( ) ∈Γp k k1 1o o i io
 and = ( + )/∑ ( + )γ γ

( ) ∈Γp k k1 1u u i iu
 respectively, where Γo and Γu are the sets 

of objects and of users. Furthermore, considering the COS and PC measurements, we randomly generate an integer 
rating ranging from 1 to 5 for each record. In our study, we have γ = .1 4. Under this scheme, after enough steps, 
the bipartite network would emerge power-law degree distributions for both users and objects. Note that, with 
fixed M and N, the number of links T could control the average degree of the bipartite network, say,  = /k T Mo  
and  = /k T Nu .

For the reshuffled and randomly generated data sets, we perform the same calculations used for the empirical 
data sets. Figure 4 reports the µ σ−  location maps of the data sets. The subplot (a) shows the location map of 
reshuffled data set. Taking the MovieLens data set as an example, the measurements classified into the same cluster 
are still in the same area on the µ σ−  location map. The reshuffle process does not change the stability pattern of 
each measurement. Actually, the measurements in the same cluster have similar stability trends against the data 
amount parameter η which is shown in Fig. S7 of the Supplementary Information. For the randomly generated 
data set, the subplot (b) shows the location map with parameter = =M N 5000 and =k 20o . Although the 
differences may be larger than the empirical results, the locations of measurements in the same cluster are still 
close to each other. Since the structure of the randomly generated data set could be controlled, we explore the effect 
of the structure influence on the similarity stability, and the results are shown in the Supplementary Information. 
In summary, the results of the reshuffled and randomly generated data sets suggest that the stability patterns come 
from the nature of each measurement.

Effect on the Recommendation
Object similarities of the user-object bipartite networks are generally used for recommendations3. Although the 
fifteen similarity measurements are widely used in the recommendation systems, the stability of the recommen-
dation regarding to the similarity measurements is still unknown. In this section, we analyze the effect of object 
similarity stability on the recommendation results. Generally speaking, the goal of a recommendation system is 
to generate a recommendation list of L objects and voluntarily to display on each user’s interface based on the target 
user’s historical selections. The system predict the scores for every unselected objects to a target user u, and rank 
the objects from high scores to low ones. The score of an object β for the target user u, βwu , is given by

Figure 4.   The μ–σ location map for (a) reshuffled MovieLens data set with parameter η = 0.5 and (b) randomly 
generated data set with M = N = 5000 and 〈ko〉 = 20. On each map, we still mark the clusters we observed in 
the empirical results which are shown in Fig. 3. It turns out that, measurements in the same clusters still have 
similar similarity stabilities even when the user behavior patterns are removed. Thus, the similarity stability 
patterns are due to the nature of each measurement, not the properties of the data sets.
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where Γu is the object set which consists with the historical selections of the user u. A high score means that, the 
system evaluates it as what the target user interests in. To quantify the stability of recommendation results, we 
divide the data sets as two samples according to the former method with η = .0 5. For a target user u, there would 
be two ranking lists of objects. If an object α is ranked at the ith position of the ranking list, we define = /αR i Mu  
as the ranking score where i is object α’s position in another ranking list and M is the number of objects. Hence, 
we can use the average ranking position R  to describe the stability of the recommendation results and R  reads

∑ ∑= ,
( )α

α

∈
R R

O 5u O

u

uu

where Ou is the object set ranking at the top L positions of the ranking list and at the same time have not been 
selected by the target user u in both of the samples, and Ou  is the number of objects in the set Ou. According to 
this definition, stable measurements would have small average ranking position R .

According to Eq. (5), we calculate the recommendation stability and find that, many of the recommendations 
are quite unstable (Table S1). The average ranking position R  of SAL, HPI, LHC, HC and IHC indices are even 
larger than 0.1 in each data set. Taking the MovieLens data set as an example, = .R 0 1 means that, when using 
the similarities of another sample data, the objects recommended at the top L positions using a data sample are 
ranked at 585th position (there are 5850 objects in the MovieLens data set). Theoretically, the average ranking 
position R  of the totally random case is 0.5 and the most stable results is = /R L M2  where M is the number of 
the objects. Thus, the theoretical best stability is . × −4 3 10 3, . × −4 9 10 3, . × −8 3 10 4  and . × −1 4 10 3 for the 
MovieLens, Netflix, Epinions and Last.FM data sets respectively, which means the recommendation lists of the 
two data samples are very close. Furthermore, if compare the similarity stability ρ with the recommendation 
stability R , one may find that, the more unstable the similarity quantification is, the more unstable the recom-
mendation generally would be (Fig. S3).

To improve the stability of the recommendation and explore the effect of the similarity stability, here we present 
a top-n-stability method. For an object α, the similarity bias δβα between object α and β, is calculated and ranked 
from the lowest value (stable) to the highest one (unstable). According to Eq. (4), when adding the score of object 
α, we only take n objects which have the most stable similarities i.e., which ranks at the top n positions to object 
α. This could be explained as

=






≤

>
,

( )
βα

βα βα

βα
s

s P n
P n0 6

where βαP  is the position of object β in object α’s stability list. Note that, unlike the classical top-n-similarity rec-
ommendation algorithm in which n objects with the highest similarities to object α would be counted44,45, here 
we ignore the exact value of similarity, just consider the stability. The basic consideration is that, if one pair of 
objects’ similarity has poor stability, the similarity would be meaningless regardless of the value of similarity. 
Through the experiments, the classical top-n-similarity method can also improve the recommendation’s stability 
for a little bit, but the improvement of our top-n-stability method is much bigger (See the Supplementary 
Information).

With different number of stable objects n, Fig. 5 shows the average ranking position of the recommended objects 
R , which is summarised according to the similarity measurement clusters. The results of similarity measurements 

the PC, LHN, PA and IHC indices could be found in the Supplementary Information. One can find that, there is 
no apparent recommendation stability improvement for the first cluster (the CN, AA, RA indexes) except in the 
Epinions data set in which the recommendation stability is poor for every similarity measurement. On the other 
hand, recommendation stability of measurements of the second cluster could be well improved by the top-n-stability 
method especially for the SAL and HPI indices whose average ranking position R  are over 0.1. However, meas-
urements in the third cluster, i.e. the MD and HC indices, have different patterns against the top-n-stability method. 
Although the HC index’s recommendation stability could be largely improved, the MD index has no apparent 
improvement. We can conclude that, when the recommendation is unstable, our top-n-stability method could 
largely improve (See Table S2 for detailed improvement ratio) the stability by taking only the stable similarities 
into account. For most similarity measurements, when considering around 10% of the similarities, the optimized 
stability could be reached. And for the poor-stability measurements, the counted ratio may even be about 5%. The 
improvement indicates that, those unstable similarities are more like false information which would lead to the 
deflected evaluation of users’ true interests.

Conclusion and Discussions
The similarity measurements can evaluate the potential relations between objects in the biological, social, com-
merce systems, they are meaningful only if the evaluated similarities are stable when the nature of the objects are 
unchangeable. Unstable similarities are generally false information which would lead to the misunderstanding 
of the relations between objects. We investigated the stabilities of fifteen similarity measurements for user-object 
bipartite networks, and found that when measuring the object similarity, most similarity measurements except the 
PA, CN, AA, RA indices, are quite unstable. The Pearson coefficient ρ of two similarity matrixes calculated from 
two data samples may be even smaller than 0.2, which means the two matrixes have little correlation. Generally 
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speaking, measurements with simple considerations can describe the natural properties of objects and are stable. 
The CN, AA, RA indices considering only the information of two objects’ common neighbours are stable and 
can be regarded as one cluster. On the other hand, variations of the CN index, namely the SAL, JAC, SOR, HPI, 
HDI indices, considering further the degree information of two objects, are less stable than the CN index and 
can be regarded as another cluster. Measurements in the same clusters have in general similar considerations and 
mathematical definitions, and thus have similar stabilities and even the dynamic against the data amount. In other 
words, while dozens of measurements have been developed, those similarity measurements can be well classified 
according to their object similarity stability. When a new measurement is proposed, one just need to analyze its 
stability to identify which cluster it belongs to, and then could get deeper insight to this measurement by comparing 
with other measurements within the same cluster. In addition, we presented a top-n-stability method to investigate 
the effect of object similarity on the recommendations. By considering only the stable similarities i.e. deleting the 
unstable, false information, the stability of the recommendation could be improved.

The investigations and considerations in this paper only focused on the objects. Actually, similarity is also an 
important method measuring the potential relations of human beings in the social systems and users in the online 
systems2,46. However, different with objects whose natural properties are definitely unchangeable, evidences have 
been found to prove that, the behaviors and interests of human behavior are temporal4,47. Thus, the stabilities of 
object similarity and human-to-human similarity may have totally different meanings. Additionally, the stability 
of those similarity measurements should be also studied in one-mode systems, which contain only one kind of 
nodes. Especially for the objects like genes, proteins etc., the investigations of similarity stability are still urgently 
needed because those objects may have different properties.

Methods
The data sets used in the this paper are usually modelled as user-object bipartite networks in which nodes can be 
divided into two groups, representing users and objects respectively. In such kind of system, links only exist between 
different kinds of nods, i.e. between users and objects. We use α and β to denote the target pair of objects and αβU  
is the set of users who select both objects α and β. The popularity αk  and βk  represent the selection times of object 
α by users respectively, and the activity ku is the number of objects user u have selected. We suppose that, the 
function ( , )x ymin  equals to the minimum value between x and y and ( , )x ymax  equals to the maximum value 
between x and y. In addition, αr  and βr  are rating vectors in the N-dimensional user space and αru  and βru  are the 
ratings user u given to the object α and β respectively. With these defined parameters, the fifteen similarity meas-
urements referred in this paper read:

Figure 5.  The average ranking position 〈R〉 of the recommended objects, against number of objects that 
counted in the top-n-stability method. The length of the recommendation list in the simulation is L =  50, and 
the results are averaged over 10 independent simulations. In general, the recommendation stability could be 
improved by considering only the stable similarities.
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