Figure 4 | Scientific Reports

Figure 4

From: Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea

Figure 4

A putative global metabolism of the MSBL1 based on 32 Single Amplified Genomes.

The figure summarizes glycolysis/gluconeogenesis, autotrophic carbon fixation, one-carbon metabolism via the tetrahydrofolate/tetrahydromethanopterin pathways, sulfur, nitrogen, amino acid degradation and aldehyde metabolism. Membrane associated proteins, proteins involved in solute or ion transport are anchored in the membrane and the arrows indicate the flow direction (import, export or symport). Encircled numbers represent the various enzymes, whereas the color of the tiny balls on the periphery indicate in how many of the SAGs was the enzyme identified: Grey color 1–5 SAGs, Blue 6–10; Yellow 11–16 SAGs. * denotes not detected. The enzymes are: (1) phosphoglucomutase; (2) PTS system cellobiose-specific IIA component protein; (3) glucose-6-phosphate isomerase; (4) 6-phosphofructokinase/Pyrophosphate—fructose 6-phosphate 1-phosphotransferase protein; (5) fructose 16-bisphosphate aldolase; (6) fructose 16-bisphosphate aldolase-phosphatase protein; (7) glyceraldehyde-3-phosphate dehydrogenase; (8) tungsten-containing aldehyde ferredoxin oxidoreductase (GAPOR)/Aldehyde oxidoreductase protein; (9) phosphoglycerate kinase protein; (10) 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase/2,3-bisphosphoglycerate-dependent phosphoglycerate mutase; (11) enolase; (12) pyruvate kinase protein; (13) ribulose bisphosphate carboxylase protein; (14*) Formate-tetrahydrofolate ligase is missing; (15) bifunctional protein FolD; (16) putative thymidylate synthase protein/5-methyltetrahydrofolate-homocysteine methyltransferase; (17*) methylenetetrahydrofolate reductase; (18) acetyl-CoA synthase (+Ni, Fe), carbon monoxide dehydrogenase; corrinoid protein (19) Acetyl-CoA decarbonylase-synthase complex/Carbon monoxide dehydrogenase; (20) formate dehydrogenase; (21*) tungsten-containing hydrogen dependent formate dehydrogenase); (22) formylmethanofuran dehydrogenase; (23) formylmethanofuran-tetrahydromethanopterin formyltransferase; (24) methenyltetrahydromethanopterin cyclohydrolase; (25) coenzyme F420-dependent N-methenyltetrahydromethanopterin dehydrogenase; (26) methylene-tetrahydromethanopterin dehydrogenase; (27) 5,10-methylenetetrahydromethanopterin reductase; (28) coenzyme F420 hydrogenase; (29) tetrahydromethanopterin S-methyltransferase; (30) CoB—CoM heterodisulfide reductase; (31) coenzyme F420-reducing hydrogenase; (32) thiosulfate sulfurtransferase GlpE protein; (33) sulfate adenylyltransferase protein; (34) adenylylsulfate kinase protein/ Probable adenylyl-sulfate kinase protein; (35) sulfoxide reductase catalytic subunit YedY protein; (36) sulfite oxidase protein/ phosphoadenosine phosphosulfate reductase protein; (37) ferredoxin-nitrite reductase protein/ sulfite reductase ferredoxin 2 protein; (38) periplasmic nitrate reductase protein; (39) NADH-quinone oxidoreductase. *Formate—tetrahydrofolate ligase is missing. Enzymes involved in amino acid degradation are labelled as: (ADH) Alcohol dehydrogenase; (OFOR) 2-Oxoacid:ferredoxin oxidoreductase; (AOR) tungsten-containing aldehyde ferredoxin oxidoreductase; (POR) Pyruvate ferredoxin oxidoreductase; (VOR) 2-ketoisovalerate ferredoxin oxidoreductase; (IOR) indolepyruvate: ferredoxin oxidoreductase; (KGOR) 2-Oxoglutarate ferredoxin oxidoreductase subunit beta; (ACS) acetyl-CoA synthetase II (NDP forming); (SCS) archaeal succinyl-CoA synthetase (NDP forming).

Back to article page