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Proteomic response of methicillin-
resistant S. aureus to a synergistic
-antibacterial drug combination: a
s> novel erythromycin derivative and
e oxacillin
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Pei-yuan Qian®, Daijie Chen’-® & Henry Lam'°

The use of antibacterial drug combinations with synergistic effects is increasingly seen as a critical
strategy to combat multi-drug resistant bacteria such as methicillin-resistant Staphylococcus aureus
(MRSA). In this work, the proteome responses in MRSA under the stress of a sub-inhibitory dose of a
synergistic drug combination of a novel erythromycin derivative, SIPI-8294, and oxacillin, were studied
by label-free quantitative proteomics. Several control treatment groups were designed to isolate
proteome responses potentially related to the synergy: (1) the non-synergistic drug combination of
erythromycin and oxacillin, (2) SIPI-8294 only, (3) oxacillin only and (4) erythromycin only. Results
showed that 200 proteins were differentially expressed in SIPI-8294/oxacillin-treated cells. Among
these proteins, the level of penicillin binding protein 2a, the protein mainly responsible for oxacillin
resistance in MRSA, was four times lower in the SIP1-8294/oxacillin group than in the erythromycin/
oxacillin group, suggesting that SIPI-8294 may interfere with this known oxacillin resistance
mechanism. Moreover, hierarchical clustering analysis of differentially expressed proteins under
different treatments revealed that SIP1-8294/oxacillin elicits very different responses than the individual
drugs or the non-synergistic erythromycin/oxacillin combination. Bioinformatic analysis indicated that
the synergistic effect can be further traced to a disruption in oxidation-reduction homeostasis and cell
wall biosynthesis.

Staphylococcus aureus (S. aureus) can cause various kinds of infections including skin abscesses, necrotizing
pneumonia, joint infections, and endocarditis'. Methicillin-resistant S. aureus (MRSA) accounts for 60-70% of S.
aureus infections in hospitals and causes the highest number of invasive infections among all antibiotic-resistant
bacteria’. According to the U.S. Centers for Disease Control and Prevention (CDC), invasive infection of MRSA
has a 14% fatality rate in 2011%. While the majority of MRSA cases are acquired in hospitals and other healthcare
settings, community-acquired MRSA infection has seen a big increase in prevalence, posing greater danger to
the public*®. Unfortunately, new antibiotic development has not kept pace with the emergence of resistance over
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Figure 1. Chemical structures for SIPI-8294 and erythromycin. The macrolactone ring is in red color
and the 5-position disosamine sugar is in blue color. The different functional groups between SIPI-8294 and
erythromycin are in pink color for SIPI-8294 and in black color for erythromycin.

the past few decades’. Although several newer antibiotics introduced after 2000, such as linezolid and daptomy-
cin, remain largely effective against MRSA, strains resistant to those antibiotics have already been reported®®.
Therefore, the use of antimicrobial drug combinations is increasingly seen as a critical strategy to combat
multi-drug resistant pathogens such as MRSA.

Generally, drug combinations can have synergistic, additive, and antagonistic effects, depending on whether
the effect of combination is bigger than, equal to or smaller than the predicted sum of the effects of individual
drugs!®. Synergistic effects are the most desirable, because lower dose can be used, which not only reduce cost
and toxicity, but also slow down the development of antibiotic resistance. However, elucidation of the mechanism
underlying such effects has been difficult, partly because traditional reductionist approaches mainly focused on
the immediate drug targets and the addition or modification of individual cellular components that underlie the
resistance!'2. This is unlikely to reveal the long chain of interactions that are likely to be responsible for syner-
gistic effects caused by multiple drugs. Instead, systems biology approaches are more suitable to unearth the key
players in the biological network which are involved'®. In this systems view, bacteria cells respond to antibiotic
damage by regulating its metabolic pathways globally to compensate for that damage'. Bacteria that survive the
antibiotic treatment will develop persistent adaptive responses, which make it possible to develop resistance over
time!>16,

Although the antimicrobial and resistance mechanisms of antibiotics have been studied for decades, much of
the biology remains unknown beyond the immediate drug targets, even for the most studied pathogens. Indeed,
more and more studies support the notion of a global response to antibiotic stress'’~'°. In a very recent study,
Cho et al. reported that 3-lactam antibiotics not only inhibit their targets, namely the penicillin binding proteins
(PBPs), in Escherichia coli as is commonly believed, but also induce a toxic malfunctioning of the biosynthetic
machinery, thereby bolstering their bactericidal activity. The cells under antibiotic stress undergo futile cycles
of cell wall synthesis and degradation, which deplete cellular resources?. Kohanski et al. has demonstrated that
many distinct classes of antibiotics commonly accelerate the electron transport chain via tricarboxylic acid (TCA)
cycle and damage the iron-sulfur cluster, which leads to increased oxidative stress. It was thus conjectured that
oxidative stress is a common antimicrobial mechanism of antibiotics?!. Recently, proteomics has been employed
as a tool to study the adaption or global response of the bacteria to the environment, including to antibiotic
stress!#?2-2%, The majority of studies showed that bacterial responses to antibiotic stress are not limited to a few
molecular targets directly related to the known antimicrobial and resistance mechanisms, but appear to be global.
A large number of proteins involved in various pathways were differentially regulated in the presence of antibi-
otics. Such studies suggested that proteomics and other systems approaches to biology can potentially provide
a more comprehensive picture of bacterial responses to antibiotics, complementing the traditional reductionist
approach.

SIPI-8294 (Chinese patent CN201010273264 and CN201410131277) is a new derivative of erythromycin
synthesized by the Shanghai Institute of Pharmaceutical Industry?. The chemical structures of SIPI-8294 and
erythromycin are shown in Fig. 1. SIPI-8294 retains partial of the erythromycin structures, 14-membered mac-
rolactone ring and 5-position desosamine sugar, but is more hydrophobic than erythromycin due to several
different functional groups (shown in Fig. 1 with pink color). It has been revealed recently that SIPI-8294 has
remarkable synergistic effect with oxacillin against MRSA in vitro®. It was shown that in the presence of a low
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Figure 2. Experimental workflow for the sample preparation and data analysis. Different drug treatment
groups were compared with control (no drug treatment) and performed spectral-counting based label-free
quantitation.

dose of SIPI-8294, the minimum inhibitory concentration (MIC) of oxacillin was vastly reduced, as if the sus-
ceptibility of MRSA against oxacillin has been restored. Specifically, SIPI-8294 could reduce the MIC of 18 out of
21 clinically used 3-lactam antibiotics against MRSA (ATCC43300) by 4 to 128 times and had synergistic effects
with oxacillin against 12 out of 16 clinical isolated MRSA strains. No synergistic effects were observed against
methicillin-susceptible strains. Interestingly, SIPI-8294 has no apparent bactericidal effect on MRSA, nor has its
parent compound, erythromycin. Unlike SIPI-8294, however, erythromycin and other macrolides antibiotics did
not exhibit any synergistic effects with the 3-lactams?. The mechanism for the synergistic effect of SIPI-8294 and
oxacillin is not known yet. This study therefore aimed at revealing the global cellular responses of MRSA against
sub-MIC dose of SIPI-8294 and oxacillin, and thereby obtaining new insights into the synergistic mechanism of
the drug combination.

Results and Discussion

Proteomic analysis. Spectral-counting based label-free quantitative proteomics was performed to investi-
gate the synergistic effect of the combination of SIPI-8294 and oxacillin (SIPI-8294/Oxa). The workflow of sample
preparation and data analysis is shown in Fig. 2. Besides the SIPI-8294/Oxa treatment group, four other treatment
groups were also acquired: erythromycin/oxacillin (Ery/Oxa), oxacillin only (Oxa), SIPI-8294 only (SIPI-8294),
and erythromycin only (Ery). Each treatment group was compared with the untreated control group respectively
to identify differentially expressed proteins.

In all cases, sub-MIC doses of antibiotics and SIPI-8294 were applied to MRSA, so as to impose stress to the
cells but not induce non-specific effects associated with cell death. In this circumstance, it is assumed that the
cells will have sufficient time to change the allocation of the translational capacity to produce proteins needed to
counteract the inflicted damage'®. The growth curves for the treated cells under different conditions are shown in
Supplementary Fig. S1. Under all treatment conditions including control group, MRSA continued to grow to the
stationary phase and reach to the similar level after 24 hr incubation.

Figure 3 shows the total numbers of differentially expressed proteins in different treatment groups, relative to
the untreated group. Figure 3a shows the volcano plot for the differentially expressed proteins in the SIPI-8294/
Oxa and Ery/Oxa groups. The proteins with p-value of student ¢-test lower than 0.05 and fold change higher
than 1.5 or lower than 0.67 (or —1.5) were considered as differentially expressed proteins. As shown in Fig. 3b,
200 proteins (120 up-regulated and 80 down-regulated) were found significantly changed in the SIPI-8294/Oxa
treatment group. The number is much higher than the sum of the numbers of differentially expressed proteins
in the Oxa and the SIPI-8294 treatment groups (72 and 57 differentially expressed proteins respectively). On the
other hand, 124 proteins (66 up-regulated and 58 down-regulated) were differentially expressed in the Ery/Oxa
treatment group, whereas 55 and 72 proteins were changed in the Ery and the Oxa treatment groups, respectively.
The Venn diagram in Fig. 3¢ shows the number of differentially expressed proteins that are unique to the combi-
nation treatment and the individual drug treatments. As shown, 154 differentially expressed proteins were unique
to the combination treatment of the SIPI-8294/Oxa treatment group, compared to 66 for the Ery/Oxa treatment
group. There are 89 proteins both differentially expressed in SIPI-8294/Oxa and Ery/Oxa group. Figure 3d shows
the correlation of these 89 proteins, and still a number of them couldn’t correlate well. These results indicate that
the cellular response of MRSA to SIPI-8294/Oxa is different and much more complicated than Ery/Oxa, hint-
ing at some specific mechanisms for the synergistic effect. All the differentially expressed proteins are listed in
Supplementary Table S1.

Hierarchical cluster analysis was performed for all the differentially expressed proteins for each treatment
group and a simple addition of the effects of SIPI-8294 and oxacillin (Additive) (Fig. 4). The “Additive” data-set
was generated by multiplying the corresponding fold changes of each differentially expressed protein in the
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Figure 3. (a) Volcano plot of differentially expressed proteins in the SIPI-8294/Oxa and Ery/Oxa groups;

(b) Numbers of differentially expressed proteins in different treatment groups, SIPI-8294/Oxa, Ery/Oxa,
SIP18294, Ery and Oxa, compared with control (no drug treatment); (c) Venn diagram for differentially
expressed proteins in the SIPI-8294/Oxa and the Ery/Oxa treatment groups compared with their individual
drug treatment groups; (d) The correlation between the differentially expressed proteins in the SIPI-8294/Oxa
and Ery/Oxa groups.

SIPI-8294 treatment group and the Oxa treatment group, to mimic the situation that SIPI-8294 only has simple
additive effect with oxacillin. As shown in Fig. 4, the differentially expressed proteins in the SIPI-8294, Oxa and
Additive treatment groups clustered together and the differentially expressed proteins in the Ery treatment group
clustered with that in the Ery/Oxa treatment group, while the differentially expressed proteins in the SIPI-8294/
Oxa treatment group was obviously different from all the other groups. These results suggest that SIPI-8294/
Oxa elicits a cellular response that is much different from what one would expect if SIPI-8294 and Oxa act inde-
pendently. Again, this provides some confidence that the observed synergistic effect does have a molecular under-
pinning, of which some essential elements should be captured in our data. Moreover, it is important to note that
the differentially expressed proteins in the SIPI-8294 treatment group did not cluster together with that in the Ery
treatment group. This suggests that the cellular responses between SIPI-8294 and erythromycin are different even
though they share similar structures (Fig. 1 in red color).

To investigate the relationships between the differentially expressed proteins and the synergistic effect, all the
differentially expressed proteins in the SIPI-8294/Oxa treatment group were processed by bioinformatic tools
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Figure 4. Hierarchical cluster analysis was conducted for all the differentially expressed proteins in the
different treatment groups. SIPI-8294/Oxa, SIPI-8294, Oxa, Ery and Ery/Oxa, as well as the outcome that
would be expected if SIPI-8294 and Oxa acted independently (Additive). Each row indicates one treatment
group and each column represents one differentially expressed protein (shown in the zoom-in image). The color
indicates relative fold changes (up-regulation relative to mean fold change in red, and down-regulation relative
to mean fold change in green). The “Additive” group is generated by multiplying the corresponding fold changes
of each differentially expressed protein in the SIPI-8294 treatment group and the Oxa treatment group.

such as Megan? for KEGG pathway analysis and SEED? protein classification (Supplementary Fig. S2 (a) and (b)).
The result shows that most assigned proteins are involved in carbohydrate metabolism (30 proteins), followed
by translation (22 proteins), amino acid metabolism (17 proteins), energy metabolism (16 proteins), and nucle-
otide metabolism (15 proteins) etc. Moreover, all the identified proteins in the SIPI-8294/Oxa treatment group
(about 1000 proteins) were also processed by the same bioinformatics tool, Megan, for KEGG pathway analysis
(Supplementary Fig. S2 (c)) and SEED protein classification (Supplementary Figure S2 (d)). The KEGG pathway
analyses and SEED protein classifications for all the identified proteins and the differentially expressed proteins
in the SIPI-8294/Oxa treatment group exhibit different profiles. This implies that the response of the bacteria to
SIPI-8294/Oxa is global and cannot be readily captured by traditional analytical techniques. To figure out what
proteins are related to the synergistic effect, the subsequent analysis focuses on the proteins involved in the known
oxacillin resistance mechanism, and the proteins which are changed only under SIPI-8294/Oxa treatment.

Synergistic effect related to oxacillin resistance mechanism. Two major resistance mechanisms
have been developed by bacteria to resist 3-lactam antibiotics: one is the production of 3-lactamase which can
inactivate or degrade the 3-lactam antibiotics before the antibiotics reach their targets; the other is the production
of penicillin binding protein 2a (PBP2a) which has low affinity with 3-lactam antibiotics to bypass the activities
of antibiotics?®?. However, the 3-lactam used in this work, oxacillin, cannot be hydrolyzed by 3-lactamase. The
main resistance mechanism to oxacillin depends on PBP2a.

As expected, PBP2a was up-regulated in all the oxacillin presented groups (the SIPI-8294/Oxa, Ery/Oxa and
Oxa treatment group) and not differentially expressed in the controls, SIPI-8294 only and Ery only treatment
groups. It is noted that in the SIPI-8294/Oxa and Ery/Oxa treatment groups the same doses of oxacillin were
applied to the cells; however, the fold changes for PBP2a were around four times lower in the SIPI-8294/Oxa
group than those in the Ery/Oxa group (Fig. 5A). Specifically, the fold changes for PBP2a were up-regulated
42.0 folds in the Ery/Oxa treatment groups whereas only up-regulated 11.8 folds in the SIPI-8294/Oxa group.
These results indicate that the synergistic effect of STPI-8294/Oxa may be due to the interference of the oxacil-
lin resistance mechanism. Interestingly, the same phenomenon was also observed for 3-lactamase even though
B-lactamase should not be responsible for the resistance of oxacillin. The fold changes for 3-lactamase were
up-regulated 16.8 folds in the Ery/Oxa treatment group but only up-regulated 4 folds in the SIPI-8294/Oxa treat-
ment group. To investigate whether this regulation occurs at the transcription or translation level, quantitative
real-time PCR (Q-RT-PCR) was performed for both genes of PBP2a (mecA) and 3-lactamase (blaZ). The results
show that mRNA transcript levels of these two enzymes (mecA and blaZ) in the SIPI-8294/Oxa group were sig-
nificantly lower than that in the Ery/Oxa group (t-test p < 0.05) as shown in Fig. 5b, following the same trend as
the corresponding proteins. Therefore, this regulation appears to happen upstream of translation, and could not
be explained by an overall reduction in protein synthesis potentially triggered by the macrolides.
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Figure 5. Quantification results for the expression of PBP2a (gene: mecA) and (3-lactamase (gene: blaZ)

at protein level by label-free quantitative proteomics method (a) and at transcription level by Q-RT-PCR
method (b). PBP2a and (3-lactamase are the proteins involved in resistance mechanism of bacteria against
B-lactam antibiotics . Label-free quantitative proteomics results show that the levels of PBP2a and 3-lactamase
are lower in the SIPI-8294/Oxa than Ery/Oxa and other treatment groups. The same trend was found at the
mRNA level. These results suggest that the synergistic effect mechanism may be related to the interference with
the oxacillin resistance mechanism. Asterisks (*) indicate differential expression at p < 0.05.

Synergistic effect related to other cellular pathways. We further focused our attention to the set
of differentially expressed proteins that most strongly distinguish the SIPI-8294/Oxa and Ery/Oxa groups.
Thirty-two proteins, among the 200 differentially expressed proteins in the SIPI-8294/Oxa group, exhibit a fold
change over five and a ratio of (fold change of SIPI-8294/Oxa) to (fold change of Ery/Oxa) over 1.5 or lower than
0.67 as shown in Table 1. Several pathways caught our attention due to their potential roles in antibiotic responses,
which we describe below.

Oxidative stress. 'Two enzymes involved in nitrogen metabolism (Fig. 6), nitrate reductase (encoded by narG)
and respiratory nitrate reductase (narH), which are responsible for reducing nitrate to nitrite were dramatically
down-regulated 73.4 and 21.0 folds, respectively. This may be significant since nitrite is a key source of nitric
oxide, an important gasotransmitter in bacteria which has close relationship with oxidative stress and antibiotic
resistance®>*!. Although the level of enzyme nitric oxide reductase (encoded by nirKS) which reduces nitrite
to nitric oxide was below the detection limit in our experiments, it is possible that the nitric oxide level will be
regulated because of the down-regulation of the up-stream enzymes. It was previously reported that elimination
of endogenous nitric oxide in MRSA can sensitize the cells to oxidative stress*. It was also conjectured that
NO-mediated antibiotic resistance is achieved through both the chemical modification of toxic compounds and
the alleviation of the oxidative stress imposed by many antibiotics®. Besides, several other important oxidore-
ductases were also down-regulated dramatically. Alcohol dehydrogenase (encoded by adh), which catalyzes the
reversible reduction of acetaldehyde to ethanol, was down-regulated 49.1 folds; and L-lactate dehydrogenase 1
(encoded by Idh1), responsible for catalyzing lactate formation from pyruvate, was down-regulated 11.9 folds in
the SIPI-8294/Oxa group. Since both alcohol dehydrogenase and L-lactate dehydrogenase 1 convert NAD* to
NADH in their reactions, they play important role in maintaining the redox homeostasis in bacteria®*. Therefore,
these results suggest that the oxidation-reduction homeostasis has been disturbed by the SIPI-8294/Oxa combi-
nation, which might be related to its observed synergistic effect.

Cell wall biosynthesis. In nitrogen metabolism (Fig. 6), the enzyme assimilatory nitrite reductase (encoded by
nirB), which reduces nitrite to ammonia, was also down-regulated by 35.8 folds. This may reduce the amount of
ammonia available for synthesizing amino acids, in particular glutamine and glutamate®. Downstream of this
pathway, glutamine synthase (encoded by glnA) was detected slightly down-regulated by 1.6 folds, and glutamate
synthase (encoded by gltBD) from glutamine was below the detection limit. Glutamate and glutamine serve as
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Q6GEW4 mnaA 221; lgeizzzy(l%lgcs"faﬂ‘ge (+)13.8 ND Cytoplasmic ﬁillzgtiggasilng
metabolism
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Table 1. Differentially expressed proteins potentially related to synergistic mechanism. Cutoff: Fold

change (sip1_s204/0xa) > 55 Fold change (sipr.s204/0x0) /FOld change (g,y/0x,) > 1.5 or <0.67. Note: The fold changes with
(+) stand for up-regulated proteins and those with (—) stand for down-regulated proteins. The symbol of “—”
stands for non-differentially expressed protein and “ND” stands for non-detected protein. The proteins which
cannot be detected in the blank but detected in the drug treatment group are considered as “induction”; the
proteins which can be detected in the blank but cannot be detected in the drug treatment group are considered
as “repression”. For the induction or repression proteins, the spectral counts are set to 1 for non-detected
proteins to calculate fold changes.

; NarG 73.4|, o
Nitrate ’ Nitrite . -
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Glutamate
metabolism

Figure 6. The differentially expressed proteins in the SIPI-8294/Oxa treatment group involved in
nitrogen metabolism pathway classified by KEGG. narG: nitrate reductase alpha subunit; narH: respiratory
nitrate reductase 3 subunit; nirB: assimilatory nitrite reductase (NAD(P)H) large subunit; NirKS: nitric oxide
reductase; glnA: glutamine synthase; gltBD: glutamate synthase. The symbol of (|) stands for down-regulated
protein, and the number ahead is the fold change. nirKS and gltBD were not detected in our experiment.

the amino group donors for many nitrogen-containing compounds in at least 37 reactions®. Besides, glutamate
is important in cell wall biosynthesis since glutamate serves as one of the amino acids in the penta-peptide com-
ponent of the cell wall (Supplementary Fig. S3) and is also the monomer of poly-~-glutamate, which is expressed
on the surface of the S. aureus cell wall®®. It has been reported that the inhibition of the expression and activity of
glutamine synthase in Mycobacteria can lower the amount of poly-~-glutamate and hamper bacteria replication.
Therefore, we surmise that the down-regulation of glutamate biosynthetic pathway may be detrimental to cell wall
synthesis. Under the stress of the SIPI-8294/Oxa combination, it may become more difficult for the cell to main-
tain cell wall integrity or to produce new cell wall for replication. Since the known bactericidal effect of oxacillin is
the interference with cell wall synthesis through inactivating penicillin-binding proteins (PBPs), the combination
of SIPI-8294/Oxa may enhance that effect through depriving the cells of the building blocks of the cell wall. To
test this hypothesis, we employed scanning electron microscope (SEM) to visualize outer surface of the cells. The
SEM image for the cells in the SIPI-8294/Oxa treatment group clearly exhibit damages on the cell surface, while
in other treatment conditions the cells are not visibly affected (Fig. 7).

Other differentially expressed proteins were found to involve in pathways such as glycolysis/gluconeogenesis,
TCA cycle, pyruvate metabolism, pyrimidine/purine metabolism, and DNA mismatch repair (Supplementary
Fig. S4). The vast number and diversity of cellular pathways affected by the SIPI-8294/Oxa treatment again con-
firmed that antibiotic response in bacteria is global rather than isolated, consistent with previous studies'***.

Conclusions

In this study, a new drug candidate SIPI-8294, derived from erythromycin and found to have synergistic effect
with oxacillin against MRSA, was investigated. In order to understand the synergistic mechanism of SIPI-8294
and oxacillin, spectral counting based label-free quantitative proteomics was applied. Based on well-developed
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Figure 7. SEM images for MRSA under different drug treatments. Ctrl: Normal methicillin-resistance S
aureus (MRSA) with no treatment; Oxa: MRSA treated with 1/8 MIC oxacillin (8 ug/ml); SIPI-8294: MRSA
treated with 8 ug/ml SIPI-8294; SIPI-8294/Oxa: MRSA treated with the combination of SIPI-8294 and oxacillin
(8 ug/ml for SIPI-8294 and 0.03125 pg/ml for oxacillin).

label-free quantitative proteomics workflow, sub-MIC doses of the drug combination of SIPI-8294/Oxa and Ery/
Oxa as well as SIPI-8294 only, oxacillin only and erythromycin only were applied to MRSA. The differentially
expressed proteins were obtained by comparing the drug treatment groups with the untreated control group.
Hierarchical clustering analysis shows that SIPI-8294/Oxa elicits very different responses in the cell than those by
the individual drugs or the Ery/Oxa combination, which shows no synergistic effect.

Moreover, the differentially expression levels of PBP2a was four times lower in the SIPI-8294/Oxa group than
those in the Ery/Oxa group in label-free quantitative proteomics results. In addition, mRNA transcription levels
also have the same trend. These results indicate that the synergistic mechanism may be related to the interference
with oxacillin resistance mechanism. We also observed large fold changes in proteins spanning many different
pathways, indicating a global response of the bacteria to the antibiotics. Although we cannot distinguish between
cause (the action of the antibiotic) and effect (the response of the bacteria to combat such action) using our data,
we identified oxidation-reduction homeostasis and cell wall biosynthesis to be possible players in mechanism of
the synergistic effect of SIPI-8294 and oxacillin. Since the cells were still growing under our conditions, it would
be expected that the cells can counteract the stress imposed on them sufficiently to restore the homeostatic bal-
ance required for continued growth. However, our data would reveal which aspects of the cellular machinery have
been perturbed, from which potential hypotheses about cause and effect can be formulated.

Methods

Minimum inhibitory concentration (MIC) tests. The S. aureus strains ATCC 43300 (MRSA) was
obtained from the American Type Culture Collection. The bacteria were cultured in cation-adjusted Mueller-
Hinton broth at 35+ 2°C. Minimum inhibitory concentration (MIC) test was performed according to the
Clinical and Laboratory Standards Institute (CLSI) standard to verify the antibiotic effect. The MIC was deter-
mined to be the lowest concentration at which no visible growth of bacteria can be observed after incubation for
24 hours.

The synergistic effect was evaluated by the fractional inhibitory concentration (FIC) index based on the Loewe
additivity zero-interaction theory®®. For the combination A and B, it was calculated as FIC = MIC4 iy combination)’
MIC (4 aone) + MIC g in combination)/ MIC (s alone)- When FIC index is lower than or equal to 0.5, the combination is
considered to have a synergistic effect. The measured MIC and FIC values were given in Supplementary Table S2.

Cell culture and drug treatment. The bacteria were grown in cation-adjusted Mueller-Hinton broth
(Sigma-Aldrich, St. Louis, MO, USA). The bacteria without dosing any antibiotics were considered as untreated
control. For antibiotic treatment, 1/8 MIC of antibiotics were added to 100 mL of medium and cultured together
with 10%/mL seeded bacteria. For the combination of SIPI-8294 and oxicillin (SIPI-8294/Oxa) treatment group,
8ug/mL of SIPI-8294 was used in this work because the lowest FIC index was obtained at this concentration
(as shown in Supplementary Table S2). The concentration for oxacillin in the SIPI-8294/Oxa group was taken
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at 1/8 MIC of oxacillin in the presence of 8 ug/mL SIPI-8294, which is 0.03125 pg/mL. For the combination of
erythromycin and oxacillin (Ery/Oxa) treatment group, the concentrations used in this work were 32 pg/mL and
0.03125p.g/mL for erythromycin and oxacillin, respectively. For the single drug treatment, SIPI-8294 was added
at the concentration of 8 ug/mL; oxacllin was added at the concentration of 8 ug/mL; erythromycin was added at
the concentration of 32 pg/mL.

Three biological replicates were performed for each condition and two technical replicates were performed
for each biological replicate. Bacteria growth was measured by ODy, (optical density at 600 nm). The cells were
harvested when ODy, reached 0.1.

Label-free quantitative proteomics. The cells were collected and washed with phosphate buffered saline
(PBS) buffer twice. Cell disruption was completed by ultra-sonication in the lysis buffer (8 M urea) for 5min
under ice-water bath. Then the cell lysate was centrifuged at 4000 rpm for 10 min at 4 °C and the supernatant was
subjected to cold acetone precipitation. The precipitated proteins were dissolved in 4 M urea and 30 mM Tris-HCl
(pH 6.5) and the protein concentration was measured by Bradford Protein assay (Bio-Rad, Hercules, CA,
U.S. A.).

Thirty micrograms of proteins were used for the proteomics sample preparation, which was reduced by dithi-
othreitol (DTT) and alkylated by iodoacetamide. The resulting proteins were then digested by trypsin (1: 50 w/w,
Promega, Madsion, WI) overnight at 37 °C. After digestion, the peptide sample was desalted by C18 reverse-phase
ZipTip (Millipore, Darmstadt, Germany) and dried by SpeedVac (Eppendorf, Hamburg, Germany). Unless oth-
erwise noted, all reagents were purchased from Sigma-Aldrich (St. Louis, MO, U.S.A).

The peptide samples were analyzed on a Thermo Scientific LTQ VelosTM platform (Thermo Fisher
Scientific, Bremen, Germany) coupled with a Thermo Accela LC. One microgram of peptides were enriched on
a trap column (Zorbax X300 SB-C18, 5 x 0.3 mm, 5um particle size) and separated on a C18 column (Thermo
Bio-Basic-18, 150 x 0.1 mm, 300 A pore size, 5 um particle size) at a flow rate of 150 wL/min and 150 min LC run.
For the MS parameters, the top ten most intense ions observed in the MS1 scan were set to acquire MS2 spectra.
The dynamics exclusion was set as 60 seconds and the normalized collision energy was set at 30%.

MM file conversion (v3.9)* was utilized to convert all the raw data into mgf file, and OMSSA*® was applied
to search all the files against MRSA database. The database was constructed by combining complete pro-
teome of 23 strains MRSA in UniProt, 1:1 ratio shuffled decoy protein sequences and common contaminants.
Carbamidomethylation on cysteine and oxidation on methionine were set as fix modification and variable mod-
ification, respectively. The search results were further processed by the Trans-Proteomic Pipeline (TPP)*!. The
spectral counts of the two technical replicates from the same biological replicate with protein FDR lower than
0.01 were combined.

For the label-free comparative statistical analysis, the proteins identified confidently in at least two out of three
biological replicates and the average spectral counts equal or over five were included in the statistical analysis. The
spectral count of each protein was normalized by the total spectral counts of the biological replicate*>*. The sta-
tistical analysis (Student’s ¢-test and G-test) was conducted by PepC* on every two conditions: antibiotic treated
versus untreated control group. The differentially expressed proteins were filtered by the following cutoff: p-value
(t-test) was lower than 0.05; and the fold changes were higher than 1.5 fold.

Bioinformatic analysis. Protein hierarchical analysis was done by Matlab. Protein localization pre-
diction was done by the automatic bioinformatic pipeline named SLEP (surface localization of extracel-
lular proteins)* and PSORTD v3.0%. Differentially expressed proteins were blasted against the NCBI-NR
database of non-redundant protein sequences, and input into MEGAN* to perform functional analysis
using the SEED classification*® of subsystems and functional roles or the KEGG classification of pathways
and enzymes.

Q-RT-PCR analysis of mecA and blaZ gene expression. The expression of two oxacillin resistance-
related genes (mecA, coding for PBP2a, and blaZ, coding for 3-lactamase) was quantified by real-time PCR.
MRSA cells were cultured in the same condition as the proteomics experiments with five drug treatment groups
and one untreated control group. In order to stabilize RNA, RNALater® (Ambion, Austin, TX) was added to
the cells immediately after the cells being collected. Total RNA was extracted using AllPrep DNA/RNA Mini
Kit (Qiagen, California, U.S.A) according to the manufacturer’s instruction. Q-RT-PCR was performed by
a two-step process. RNA was first reverse transcribed to cDNA (Invitrogen, Carlsbad, CA); and RT-PCR was
conducted on 7500 Fast RT-PCR (Applied Biosystems, California, U.S.A) using KAPA SYBR® FAST qPCR Kit
with 40 cycles of denaturation for 5seconds at 95 °C, annealing for 30 seconds at 50 °C, and extension for 20
seconds at 72 °C PCR primers for the mecA gene were (F: GTTAGATTGGGATCATAGCGTCATT) and (R:
GCCTAATCTCATATGTGTTC CTGTAT); for blaZ gene were (F: CGTCTAAAAGAACTAGGAG) and (R:
GCTTAA TTTTCCATTTGCGATAAG) and for 16S rRNA were (F: TCCGGAATTATTGGGCGTAA) and (R:
CCACTTTCCTCTTCTGCACTCA). The melting curve analysis was performed immediately after amplification
to verify the specificity of the PCR amplification products.

Fluorescence was measured at the end of the annealing-extension phase of each cycle. A threshold value
for the fluorescence of all samples was set manually. The reaction cycle at which the PCR product exceeds this
fluorescence threshold was identified as the threshold cycle (CT). The relative quantitation was calculated by the
27AACT method®.

SEM. The cells were grown in SIPI-8294/Oxa (8/0.03125 ug/mL), SIPI-8294 (8 pg/mL), Oxacillin (8 pg/
mL) and untreated control medium to OD 0.1. The cells were fixed in 2.5% glutaraldehyde (PBS buffer) for
2hours, and washed with PBS buffer twice after fixation. Then the cells were dehydration in an ethanol series with
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increasing concentration (30%, 40%, 50%, 60%, 70%, 80%, 90%, pure ethanol) for 15min, and finally suspend in
pure tert-butanol for 15 min. The cells were air-dried and coated with gold followed by scanning electron micro-
scope analysis (JSM-6390 Scanning Electron Microscope).
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