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Universal limiting shape of worn 
profile under multiple-mode 
fretting conditions: theory and 
experimental evidence
Andrey I. Dmitriev1,2,3, Lars B. Voll4, Sergey G. Psakhie1,2,3 & Valentin L. Popov2,3,4

We consider multiple-mode fretting wear in a frictional contact of elastic bodies subjected to a small-
amplitude oscillation, which may include in-plane and out-of-plane translation, torsion and tilting 
(“periodic rolling”). While the detailed kinetics of wear depends on the particular loading history and 
wear mechanism, the final worn shape, under some additional conditions, occurs to be universal for 
all types and loading and wear mechanisms. This universal form is determined solely by the radius of 
the permanent stick region and the maximum indentation depth during the loading cycle. We provide 
experimental evidence for the correctness of the theoretically predicted limiting shape. The existence of 
the universal limiting shape can be used for designing joints which are resistant to fretting wear.

Fretting wear occurs almost inevitably in frictional contacts subjected to small amplitude alternating loads 
(mechanical vibration or thermal cycling). Even if the oscillating loads are well below the static friction limit, they 
generally will lead to a repeated slip in the boundary region of the contact; this may cause progressive changing 
of the local form of the contacting partners and fretting fatigue. The problem of fretting wear attracts much atten-
tion because of its technological importance for such applications as wear in steam generator tubes1,2, biomedical 
implants3,4, electrical contacts5,6, corrosion and materials degradation7, dovetail blade roots of gas turbines8,9 and 
many others. It remains an object of intensive experimental and theoretical investigation as there are still several 
open problems, especially concerning wear under complex load histories as well as development of principles of 
“anti-fretting design”.

In a general case, the relative movement of contacting bodies can include tangential oscillations in the two 
in-plane directions, normal oscillations, torsion around an axis normal to the contact plane as well as tilting (roll-
ing) around two horizontal axes. Correspondingly, depending on the direction of relative displacement or rota-
tion of bodies in contact, different fretting “modes” can be distinguished: tangential, radial, rolling and torsional 
fretting, while the list can be continued. Up to now, most research was focused on fretting wear in tangential 
mode10–12; there are only few reports on other single-mode fretting regimes as torsional13 or rotational14,15, even 
less on dual-motion fretting4,5,16 and practically no studies on multiple-mode fretting. In the present paper, we 
consider the general case of superimposed oscillations in all three possible directions as well as rotation around 
three possible axes. We will discuss some cases of kinetics of the progressive fretting wear; however, our main 
attention is focused on the limiting shape of the worn surfaces (if this limiting shape does exist). We will show that 
for system, in which the normal and tangential contact problems can be considered as uncoupled, this limiting 
shape does not depend on particular mode of loading.

In the case of two-dimensional contacts and uni-directional tangential oscillations, Ciavarella and Hills17 
argued that the wear rate in fretting process slows down as the wear process goes on. This is due to continuous 
decrease of pressure in the worn region and increase of pressure in the initial stick region. If the wear occurs 
continuously (without breaking out of larger wear debris) and the worn material is continuously transported out 
of the contact zone, the worn profile will tend to some limiting shape in which no further wear occurs. The exist-
ence of the limiting shape for three-dimensional axis-symmetric contacts was proven in a recent paper18, where 
a procedure for the analytical calculation of the limiting profile has also been described. In the present paper, we 
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will show that this limiting shape belongs to a universal class of shapes which are independent of the particular 
loading mode; this allows formulating a universal principle for “anti-fretting” design. We start with a qualitative 
discussion of the physical nature of this generality.

Results
Universality of the limiting shape in conditions of multiple-mode fretting wear.  Let us consider 
two elastic bodies with an axis-symmetric differential profile f r( )0 , where r is the in-plane polar radius. The cor-
responding contact problem can always be equivalently replaced by a contact of an elastic half-space with renor-
malized elastic properties and a rigid axis-symmetrical indenter. We will only consider the differential worn 
profile and assume for simplicity that only the rigid profile is worn.

Contrary to the most theoretical studies of fretting, we will not assume any particular wear and friction laws 
but only make the following very general assumptions about the local wear rate and frictional forces: (a) Wear 
should only occur in the contact areas with non-vanishing relative displacement of surfaces (thus merely exist-
ence of tangential stresses is not enough for initiating the wear process); (b) Wear should occur only in the contact 
areas with non-vanishing pressure; (c) The law of friction (which does not have necessarily to be the Coulomb 
law) allows for existence of the region of permanent stick.

Let us show that already these assumptions determine unambiguously the limiting worn shape. From the 
existence of a region of permanent stick (assumption (c)) it follows that in this region there will be no wear 
(assumption (a)), and that the shape of the indenter in this region will coincide with the initial non-worn shape 
(region I in Fig. 1). Outside of the region of permanent stick, the wear can only vanish if the pressure reduces to 
zero (assumption (b)). This means that the no-contact condition must be fulfilled. However, as this form has to be 
achieved due to wear, the limiting profile of the indenter must exactly coincide with the form of the free surface 
(no-pressure condition!) produced by the initial indenter shape inside the radius of the permanent stick (region 
II in Fig. 1). Thus, in the final state, in the region II, the indenter and the elastic half space are in the state of “incip-
ient contact”. Finally, in the region III there is no contact and the indenter retains its unworn shape, as in the 
region I. The outer radius of worn region, a, is determined by the intersection of the free surface profile in the 
region II with the actual non-worn shape of the indenter.

Thus, the limiting shape of the worn profile is determined solely by the solution of the normal contact problem 
of an indenter having the shape of the initial non-worn profile inside the region of permanent stick; the initial 
shape outside the region of permanent stick is irrelevant. The limiting shape therefore may only depend on the 
parameters determining the normal contact solution: the radius c of the permanent stick as well as the maximum 
indentation depth during the oscillation cycle: exactly in the moment of the maximum indentation the worn 
surface of the indenter and the free surface of the elastic half-space will “touch” each other (come into “incipient 
contact”). In this state, small tangential or rotational movements of any kind will not change the state of the nor-
mal contact and thus will not lead to any wear. The limiting worn shape in the region II therefore does depend on 
the shape of the profile in the region I but does not depend on the kind of oscillating loading. Thus, the shape of the 
worn profile found in18 for the case of single-mode fretting under tangential oscillations is valid for any other 
fretting mode, including arbitrary superposition of tangential and normal oscillations, torsion and tilting. This is 
of course strictly valid only in the half-space approximation (that is under assumption of small slope of profile, 
including the worn profile in all points of the contact area). The possible influence of the geometrical non-linearity 
is not considered here and remains open. However, the experimental investigation strongly supports the results 
obtained in the half-space-approximation (see below).

Figure 1.  Three regions in the final worn profile. I is the region of permanent stick where no profile changes 
take place, II is the part, in which no-pressure condition is achieved in the final state (state of “incipient 
contact”), III is the region of no-contact.
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Experimental determination of the limiting shape.  To experimentally validate the predicted limiting 
shape an experimental set up described in the Section “Methods” was designed. As the predicted limiting shape 
does not depend on the particular fretting mode, the torsional mode was chosen for experimental validation 
as it can be simply experimentally implemented and controlled. A rubber half-ball was pressed against a rigid 
abrasive surface and worn due to a periodical torsional loading around the vertical symmetry axis of the ball. The 
evolution of the worn profile was determined from photographs of the ball at different times Fig. 2a shows the 
progressive wear after four intervals of 2,160 oscillations. The progress of wear after intervals of oscillation cycles 
show that the wear is slowing down and the profile tends to some limiting shape as depicted in Fig. 2b. The theo-
retically predicted limiting shape is shown in Fig. 2a by dashed curves, and it clearly marks the shape to which the 
real experimental wear shapes are tending.

In the paper18, explicit equations for the limiting shape were provided for the case of a sample having initially 
a parabolic form. Because in our experiments the radius of the permanent stick and the radius of the worn region 
cannot be considered as small compared with the radius of the ball, we used for the calculation of the limiting 
shape shown in Fig. 2 the exact ball form:

= − − .f r R R r( ) (1)0
2 2

The limiting shape is determined by the Eq. (6) (see Section “Methods”) where the function g x( )0  used in this 
Eq. can be calculated by substituting (1) into (7):
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Thus, the explicit form of the limiting shape for the case when the initial shape was a ball with radius R is given 
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As already discussed above, this shape is determined solely by the initial form (which in this case is character-
ized by the radius R of the ball), the maximum indentation depth dmax and the radius c of region of permanent 
stick. The relation (3) calculated for the values of above three parameters measured in the experiment shown in 
Fig. 2 are presented in this Figure with dashed line. The measured shape after 8640 oscillation cycles agrees amaz-
ingly well with the predicted limiting shape.

It is worth noting that even the asymptotic behaviour in the vicinity of the inner radius of the worn region 
coincides with the theoretical result very well. Thus, the assumption of small slopes of the surface (half-space 
approximation) obviously does not discredit the logic and the results of the theoretical consideration. In our 
opinion, such exact coincidence even for one single fretting mode provides sufficient support for the basic idea of 
the theoretical consideration and thus also for the universality of the limiting profile. In spite of this, we carried 
out experiments for one further fretting mode (pure tangential oscillations). Contrary to torsion, the loading in 
this mode is not axis-symmetrical. However, the resulting profile is axis-symmetric and its final form is described 
by the same eq. (3), as can be seen from Fig. 3.

An example for the kinetics of fretting wear.  We have argued that the limiting worn profile is deter-
mined solely by the radius of the permanent stick region and the maximum indentation depth during the loading 
cycle and doesn’t depend on the detailed history of oscillating loading or on the particular mode of oscillation. To 
illustrate this conclusion we carried out step-by-step simulation of the kinetics of the dual-mode wear process and 

Figure 2.  (a) The cross section of spherical indenter worn profile obtained experimentally due to torsional 
fretting wear at four consecutive time moments. Note the difference of vertical and horizontal scaling. The 
theoretical limiting worn shape calculated according to Eq. (3) for the same parameters as in experiment is 
shown by dashed curve. (b) The photo of the experimental indenter in the final state.
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compared the resulting profile with the analytical solution. We applied the rapid simulation procedure described 
in19 to an indenter which initially had a parabolic form =z r R/(2 )2 , where R is the radius of curvature. Other than 
for the limiting shape, for kinetics of wear the particular form of the wear law is essential. We used the simplest law 
of Reye-Khrushchov-Archard20–22 stating that the linear wear is proportional to the normal or tangential stress and 
to the relative slip and inversely proportional to the hardness σ0, which can be written in the incremental form as

σ
τ ω∆ = ∆ − ∆ .f r k r u r u t( ) ( )( ( ) sin )

(4)
wear

x x x
0

(0)

In the following we consider a dual-mode fretting under the influence of superimposed normal oscillations 
with amplitude uz

(0) and frequency ωz and tangential oscillations ux
(0) and frequency ωx given by the relations

ω φ ω= + + = .d d u t u u tsin( ), sin( ) (5)z z x x x0
(0) (0)

The maximum indentation depth, which is one of the main determining parameters of the limiting shape, is 
obviously given by = + | |d d uzmax 0

(0) . The radius of stick region is determined by Equations described in18 and23. 
Development of worn shape in the case when ωz ≪  ωx is shown in Fig. 4.

One can see complicated changes of profile due to the difference in the frequencies of normal and tangential 
oscillations. However, with increasing the number of oscillation cycles wear slows down and finally tends to 
the limiting profile shown in Fig. 4 by a bold gray line with white dots. This limiting shape is determined by the 
Eq. (6) (see Section “Methods”).

Figure 3.  (a) The cross section of spherical indenter worn profile obtained experimentally due to tangential 
fretting wear. Only the final profile after a very large number of oscillation cycles is shown. The theoretical 
limiting worn shape calculated according to Eq. (3) for the same parameters as in the experiment is shown by 
the dashed curve. (b) Photos of the experimental indenter in the final state.

Figure 4.  Calculated evolution of 3D profile during dual-motion fretting for the following set of 
parameters: ωz = 0.05ωx, =u uz x

( ) ( )0 0 , ϕ = 0. The analytically calculated limiting 3D shape according to (6) is 
marked by bold gray curve with dots.
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Discussion
In this paper we have shown that the limiting shape due to fretting wear found in18 for the case of fretting due to 
tangential oscillations is valid in the general case of multiple-mode fretting under action of superimposed normal 
and tangential oscillations as well as torsion and tilting. The limiting shape does not depend on the type of fretting 
loading and does not depend on elastic properties of contacting bodies but only on the initial shape in the region 
of permanent stick, the radius of the region of permanent stick and the maximum indentation depth during the 
oscillation history. The universality was illustrated by a numerical example of complicated kinetics of worn pro-
file due to normal and tangential oscillations with different frequencies and was validated by specially designed 
experiments with torsional and tangential fretting.

Note that the existence and the universality of the limiting worn profile suggest a simple design rule for 
parts subjected to oscillations: if it is known from the practice that fretting is a problem for a particular sys-
tem, the parts can be brought to the limiting form during production process which guarantees further wear 
less running of the system. If the exact contact conditions are not known, this production step can be realized 
as a “running-in” procedure. The running-in can be carried out under controlled load and environmental 
parameters which ensure the soft wear conditions needed for development of the ideal limiting form. The 
environmental conditions after a proper running-in are then of minor importance as there is no further wear 
in this state.

The limiting profile described in the paper develops under very general assumptions. However even these gen-
eral assumptions can still be violated under real experimental or technological conditions. One of these assump-
tions is the “assumption of continuous wear”. This means, that no wear particles are produced during the fretting 
process with a size that is comparable with the characteristic indentation depth. We have made sure that our 
experimental conditions meet these requirements. However, it is known that in metallic contacts these conditions 
can be violated due to adhesive wear. The suggested theory is not applicable to such cases. However, even in these 
cases, the existence of the limiting shape can be used for “soft preprocessing” under conditions for which severe 
wear is avoided.

Methods
Theory and numerical simulation.  Analytical calculation of the limiting shape is based on the method of 
dimensionality reduction (MDR)24,25. In18, it was shown that the limiting worn shape, ∞f r( ), is given by
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where f r( )0  is the initial, non-worn shape of the indenter, c is the radius of permanent stick, d is the indentation 
depth (which in the case of multiple-mode fretting has to be understood as maximum indentation depth during 
the oscillation cycle, g x( )0  is given by the equation
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and ′f r( )0  means the derivative with respect to r. The outer radius of the worn region, a, is given by the intersec-
tion of the profile (6) with the initial profile as illustrated in Fig. 1. Note that the limiting shape does depend on 
the initial shape, the radius of the radius of permanent stick and the maximum indentation depth but not on 
elastic properties of the contacting bodies.

Numerical simulation of kinetics of fretting wear.  Simulation of the progressive wear under particular 
double-mode fretting conditions was also carried out using the method of dimensionality reduction. The detailed 
description of the used method can be found in19.

Experimental set up.  For experimental validation of the theoretically predicted universal limiting shape, an 
experimental set up shown in Fig. 5 was designed and built. The central working part of the setup is a rubber 
half-ball which was pressed against a hard abrasive surface mounted on a rotatable table. According to the theory, 
the limiting shape does not depend on the particular fretting mode. We therefore used the torsional mode which 
is the simplest for experimental realization and control. The rubber ball was indented by a given indentation 
depth, which remained constant during the whole experiment. After that the counter-body was rotated around 
the vertical axis of symmetry of the rubber specimen. After completing of 2,160 cycles, the sample was demounted 
and the shape was determined from photographs. Then the ball was mounted back, pressed to the same indenta-
tion depth, and loaded by torsional oscillations with the same for the next 2,160 cycles and so on. The resulting 
profiles with progressive wear are shown in Fig. 2. The construction and function of the experimental set up and 
the process of fretting wear are illustrated by a video in the supplemental material. The parameters of the experi-
ment were: ball radius (R) 14.5 mm, indentation depth (d) 2 mm, radius of the region of permanent stick (c) 
3.25 mm. The resulting outer radius of the worn region was 7.35 mm. Other technical parameters are summarized 
in Table 1.
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Experiments with fretting under tangential oscillations were carried out on the linear tribometer described 
in26 in which the normal force control was replaced by displacement control.
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