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In this study, a novel photoluminescent quantum dots device with laser-processed microscale patterns
. has been demonstrated to be used as a white light emitting source. The pulsed laser ablation technique
- was employed to directly fabricate microscale square holes with nano-ripple structures onto the
. sapphire substrate of a flip-chip blue light-emitting diode, confining sprayed quantum dots into well-
. defined areas and eliminating the coffee ring effect. The electroluminescence characterizations showed
. that the white light emission from the developed photoluminescent quantum-dot light-emitting diode
. exhibits stable emission at different driving currents. With a flexibility of controlling the quantum dots
proportions in the patterned square holes, our developed white-light emitting source not only can be
employed in the display applications with color triangle enlarged by 47% compared with the NTSC
. standard, but also provide the great potential in future lighting industry with the correlated color
. temperature continuously changed in a wide range.

Recently the light-emitting diode (LED) with white-light emission has become a key component in optoelectronic
. applications, especially for the low power-consumption lighting devices and full-color displays. Currently, the
© most common method for the white-light LED fabrication in industrials is the use of the gallium nitride (GaN)
* based blue LEDs to pump yellow phosphors'2. Phosphor-based white-light LEDs provide the high efficiency light
. emission performance and are usually employed as the backlight source in displays. This approach is efficient
. and cost effective. Although the correlated color temperature (CCT) of the light emitted from phosphor-based
: white-light LEDs can be continuously tuned in a wide range with different phosphor doping concentrations, their
© color gamut is still limited and cannot reproduce the natural colors®=. To enlarge the color gamut, many new
. phosphor materials with narrow emission bandwidth have been developed and can be mixed together to render
. the natural white-light emission®”.
: Colloidal quantum dots (QDs), because of their significant features such as the narrow emission bandwidth,
. broad absorption spectrum and tunable size quantization effect, have been extensively developed and applied
- for the display applications®. For example, Chen et al. used the spray coating method to separate the different
: color-emissions QDs on a 2-inch glass substrate, generating a large homogeneous white light emission plate as a
. backlight®. Recently, an alternative technique for deploying QDs which is called the quantum dot enhancement
. film (QDEF) provides a straightforward application in the integration with the existing display manufacturing
: processes. The amount and ratio of QDs with different color emissions determine the final color specification'.
However, the mixture of different quantum-dots may cause significantly reabsorption effect, leading to the CIE
change and the efficiency reduction of constitute QDs'!-13,
In this paper, we exploit the pulsed laser direct writing and aerosol jet (A]) spray coating techniques to develop
a novel photoluminescent quantum dots device with microscale patterns for the uses as a white light emitting
source'®. The pulsed laser ablation technique!>~'” was employed to directly fabricate microscale square holes with
nano-ripple structures onto the sapphire substrate of a flip-chip blue light-emitting diode, confining sprayed
quantum dots into well-defined areas and eliminating the coffee ring effect. The AJ spray coating method is a
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Figure 1. Preparation of the QD white-light LEDs. (a) Schematic diagram of the flip-chip blue LED structure.
(b) Direct structural patterning on the sapphire substrate through the laser ablation using an 800-nm pulsed

fs laser beam focused on the sapphire surface. (c) Patterned pixel structure. The pixel size is in a square area of
40 um x 40 um. The inset shows the OM image of the fabricated sample. Via the AJ spray coating method, QDs
of green and red light emission can be sequentially injected into the square holes as the process shown in (d,e).

(f) The QD white-light LED device. The inset presents the fluorescence microscope image of the chessboard
patterned surface with QDs of red and green emission.
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mask-free technique and can be used to reduce the volume of QD films, decrease the consumption of QDs, and
easily deposit QDs on target areas with determined QDs proportions'®. With these two advanced techniques,
QDs of different color emissions can be sprayed at specific areas with proportional compositions and separated
to prevent the interactions between each other. With a flexibility of controlling the quantum dots proportions in
the patterned square holes, our developed white-light emitting source not only can be employed in the display
applications, but also provide the great potential in future illumination industry.

Results and Discussion

In the process of fabricating the developed white-light LED, a flip-chip blue LED was prepared to be used as a light
emitting source to irradiate the sprayed ZnS and CdSe QDs for green and red light emission, respectively. The
chip was in a square dimension of 510 pum X 510 um, and the emission wavelength was approximately at 450 nm
as the chip operated at a driving current of 50 mA. This LED structure is schematically shown in Fig. 1a, where the
LED epitaxial layer sandwiched between a top sapphire substrate and a bottom metal contact. To pattern an array
of microscale square holes on the sapphire substrate, as shown in Fig. 1b, an 800 nm Ti:Sapphire femtosecond (fs)
laser (Clark-MXR, CPA-2010) was employed to directly ablate the sapphire material, while the pulse duration and
the repetition rate of the fs laser beam were controlled at 100 fs and 1kHz, respectively. Through a 50X objective
lens, the incident laser light beam can be concentrated to a focused spot at the size around 1.5 pm in diameter.
The laser-processing area can be well defined using a three-dimensional translation stage. Unlike other lithogra-
phy techniques and etching facilities, the laser ablation method not only provides the fine structure patterning
process but also can be directly employed in atmospheric environment without any pre-treatments on samples
or the demands of a high vacuum exhausting system. Regarding the precision of pattern fabrication, the smallest
linewidth on the sapphire material is around 1.5 um in the laser-processing system. Such a fabrication precision
fulfills the requirement in patterning our samples with minimum separation of QDs emitted in different colors.
Figure 1c shows the schematic laser-ablated pattern of a microscale square holes array on the sapphire substrate
in a flip-chip blue LED structure, while the inset displays the top-view optical microscope (OM) image of the
fabricated 10 x 10 square holes array. The laser-ablated hole is 40 um x 40 um in a square dimension and 5 pm in
depth. The square holes are separated by sidewall boundaries of 10 pm in width.

After completing the laser ablation process, the AJ printing technology was employed to spray QDs with
different color emissions into individual square microholes, preventing the unrequired QDs mixture in our devel-
oped QD white-light LEDs. The AJ printing equipment was developed by the Optomec Inc. The QDs can be
homogenous sprayed onto the sample surface by aerosolizing the QD droplets and precisely injected into specific
locations by manipulating the dynamic of surrounding air!!. To start with the AJ spray coating of QDs, first the
QDs with red (green) light emission were prepared in toluene solution with the concentration of approximately
5mg/mL. Then, 1 cm?® of the prepared QD solution was loaded into an ultrasonic atomizer and ejected as a gas
stream. The AJ spray performance can be adjusted by controlling the distance between the deposition head,
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Figure 2. Morphology characterization of the laser-ablated microholes. The morphology of the laser-ablated
square holes is characterized by using a laser scanning confocal microscope and the results are shown in (a,b).
(c) Indicates the extracted surface profile of the ablated holes. The length and the depth of the ablated square
holes are around 40 um and 5 pm, respectively.

pneumatic atomization frequency, carrier gas flow rate, and the amount of focusing gas input. The linewidth of
the sprayed QDs in a line can be achieved at around 40 um. Via the control between the rate of an on/off shut-
ter and moving speed of the translation table underneath, QDs can be included in a single droplet format and
sprayed individually into the fabricated microsholes. The QDs droplet is around at 30 um in diameter. In our
work, we alternately sprayed QDs with red and green light emission in a chessboard pattern as described in the
schematic images shown in Fig. 1d,e. Twice the number of QDs droplets with green light emission were sprayed
into the microholes due to the higher down-conversion efficiency of the QDs in red light emission. Finally, a
white-light LED based on the combination of a flip-chip blue LED and QDs of red and green light emission in a
patterned holes array was produced. Figure 1f shows the schematic diagram and the inset indicates the fluores-
cence microscope image of QDs sprayed white-light LED chip.

The morphology of the laser-processed square holes was characterized using a laser scanning confocal micro-
scope and the result is shown in Fig. 2. According to the image, the length and the depth of the ablated square
holes are around 40 pm and 5 um, respectively. The width of the sidewall boundary is around 10 pum. With the
laser-ablated structure, the light emitting from the blue light-emitting chip still exhibits the light emission at a
central emission wavelength of 450 nm with a bandwidth of 40 nm, and the light intensity remains a uniform
distribution at a wide angular range. The optical properties of the sprayed ZnS and CdSe QDs employed in the
developed white-light LEDs were characterized by the absorption and the PL spectral measurements as the results
shown in Fig. 3b,c. The ZnS QDs in toluene solution show the light emission at a peak wavelength of 535 nm,
while the central emission wavelength of the CdSe QDs is at 630 nm. The TEM images as the insets in Fig. 3b,c
show that the corresponding sizes of the ZnS and CdSe QDs are 7nm and 10 nm, respectively.

Figure 4a shows the OM image of the QDs sprayed on the flat sapphire surface. A significant coffee ring effect
occurs because of most QDs accumulated at the surrounding edge of the QDs droplets. Compared with the QDs
sprayed onto the patterned sapphire structure, the unwanted coffee ring effect can be eliminated. According to the
optical microscope images of the QDs dropping onto the laser-ablated area, quite a few of the injected QDs may
mix together on the boundary as the dashed circle shown in Fig. 4c. The QD mixture may result from the system
vibration or the over-deposition. Compared to the QDs directly sprayed onto a flat surface as displayed in Fig. 4a,
the developed technique demonstrated in this work indeed shows its advantage of separating QDs in individual
locations. Also the corresponding SEM image (in the supplementary information as Fig. S1), most of the QDs are
observed to accumulate at the center of the microholes, which may result from the generation of the nano-ripple
structure after the laser ablation process. Such a nano-rippled surface exhibits hydrophobic characteristics and
can be used to concentrate the droplets on the target area with a larger contact angle'®~*. In summary, the drop-
lets may be concentrated at the center and thus most QDs are accumulated at specific areas, as shown in Fig. 4c.
The coffee ring effect is eliminated by the fabricated nano-ripple structures from the laser-ablation process.

The light-emitting performance of the QD-based white-light LEDs was characterized by conducting a series
of the EL spectral measurements at different driving currents. Figure 5a shows the normalized EL spectra of the
developed light-emitting devices, collected at the normal direction with the current changed in range from 1 mA
to 50 mA. These results can be extracted and represented with corresponding the Commission Internationale
d’Eclairage (CIE) coordinates and correlated color temperature (CCT) as shown in Fig. 5b,c, respectively. With
an increase of the driving current, the CIE coordinate is shifted from (0.325, 0.300) to (0.308, 0.280) and the CCT
is varied from 6000 K to 7500 K. The reason for this could be attributed to the continuous increase in the amount
of blue photons with the current whereas the QD emission is saturated at high currents. In order to improve the
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Figure 3. Spectral characterizations. (a) The flip-chip blue LED exhibits light emission at the central
wavelength of 450 nm. (b,c) Show the absorption (dashed line) and PL emission (solid line) spectra of the ZnS
and CdSe QDs. The ZnS QDs in toluene solution show the light emission at a peak wavelength of 535 nm, while
the central emission wavelength of the CdSe QDs is at 630 nm. The insets in (b,c) show the TEM images of the
QDs used in this study.

Figure 4. Comparison of QDs sprayed on flat and patterned sapphire substrates. (a) An OM image of QDs
sprayed onto the flat sapphire substrate. The coffee ring effect can be clearly observed at the surrounding edge of
the QD droplets. (b) A scanning electron microscope (SEM) image of a laser-ablated square hole. Nano-ripples
structure is formed at the laser-ablated locations, providing the hydrophobic surface. With the nano-ripples
structure, the sprayed QDs are well confined in the patterned area as shown in (c).

color property variation, a distributed Bragg reflector (DBR) is employed to adjoin with the photoluminescent
QD-based device to suppress the number of the blue-light-emission photons. The DBR exhibits a high reflective
band centered at 450 nm as the reflectance spectrum (in the supplementary information as Fig. S5a). With this
added DBR structure, the ratio between the blue, green and red light emission can be kept at a constant value as
the spectra displayed (in the supplementary information as Fig. S5b). The driving current is varied from 10 mA
to 50 mA. Therefore, the corresponding CIE coordinates and CCT at different driving currents can be maintained
at almost the same value, performing constant color properties as demonstrated (in the supplementary informa-
tion as Fig. S5¢,d). A DBR structure is suggested to be used to enhance the quality of light emission at different
driving currents?. Also we found that the color shift at different viewing angles. The angle-dependent EL spectral
measurements at different viewing angles (in the supplementary information as Fig. S2a). The intensity ratios of
red and green light emission would be reduced with an increase of the viewing angle, which may result from most
of the QDs were only dropped on the top surface of the flip-chip LED (in the supplementary information as Fig.
S2b), the simulation also have similar results (Fig. S3). Since the blue light emission of the LED chip employed
in this work is uniform at different angles, there is still a large amount of emitted light can be detected at a wider
angle, particularly the off-axis direction. Regarding the commercialized products, usually a reflector cup would be
added to LEDs to modify the far-field pattern, performing the lambertian distribution. Therefore, the color shift
would be small at different viewing angles. Also, we have compared with liquid type QD solution and QD drop-
lets, and the QD droplets is the reduction in quantum efficiency due to the solvent is dried up (Fig. S4). Figure 5d
shows the measured luminous efficiency and luminous efficacy of radiation (LER) for the developed QD-based
white light LED operated at different driving currents in a range from 1 mA to 150 mA. The LER of the QD white
LED device is approximately 262 1lm/W,,, at 50 mA.

To employ the developed white-light LEDs in further display applications, we compared the CIE coordinates
of our white-light LEDs with the National Television System Committee (NTSC) standard color triangle. The
RGB color coordinates of the QD-based white-light LEDs are given at (0.7007, 0.2992), (0.2295, 0.7250), and
(0.1500, 0.0295) respectively as represented in Fig. 6. The maximum color gamut of using the QDs white-light
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Figure 5. EL characterizations and color performance. (a) Shows the relative EL emission spectra of the
QD-based white-light LEDs at driving current changed from 10 mA to 50 mA. The inset OM image shows white
light emission from the developed light-emitting device. (b) Indicates the trace of light illumination from the
photoluminescent QD-based white-light LEDs in the CIE1931 chromaticity diagram. (c) Shows the CCT values
of the developed device operated at different driving currents. (d) The luminous efficiency and the luminous
efficacy of radiation (LER) of the developed QD-based white light LEDs. The driving current is changed from

1 mA to 150 mA, while the LER is around 2621,,/W,,, at 50 mA.
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Figure 6. Comparison of the color triangles between the standard NTSC format and the light emission
performance of the QD-based white-light LEDs in the CIE1976 color space chromaticity diagram.

LEDs is greater than the standard NTSC color gamut by 47%. This result can be attributed to the narrow band-
width of the QDs emission, giving the promising potential in displays with high color purity. Furthermore, in our
developed QDs white-light LEDs, we can control the QD proportions in individual laser-ablated square holes
to manipulate the CCT performance in a wide range from 3936 K to 9705 K. Figure 7 demonstrates the simu-
lation results of the CCT performance with different proportions of QDs in green and red light emission using
the OptisWorks, while the corresponding recipes of QDs proportions for different color temperatures can be
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Figure 7. CIE simulations. Simulated CIE values for light emission from a unit pixel pattern with different
proportions of red- and green-light emission QDs and blue light intensities. The values were obtained using the
blackbody radiation law in OptisWorks. The inset shows the model of a unit pixel pattern and the color emission
at different correlated color temperatures.

B:G:R 3:4:4 10:4:3 10:4:5 10:4:10
(xy) (0.325, 0.395) (0.271,0.312) (0.302,0.311) (0.363,0.307)
CCT 5752.6K 9705K 7334K 3936K

Table 1. White light emission performance of the developed QD-based white-light LEDs with different
RGB QD ratios.

obtained as shown in Table 1. Thus, our developed QDs white-light LEDs not only can be employed in the display
applications, but also provide the great potential in future illumination industry.

Conclusion

QD-based white-light LEDs with a microscale square holes array have been successfully demonstrated for white
light emission by employing the pulsed laser ablation and the AJ printing techniques. After the laser treatment,
the bottom of the microholes formed a nano-rippled surface with hydrophobic characteristics, and the coffee ring
effect was eliminated because the QD droplets were concentrated in a specific area. The EL results, shows that
the QD WLEDs exhibited stable emission upon being driven by different currents. The CCT of the QD WLEDs
shifted from 6000K to 7500 K when the current increased from 1 mA to 50 mA because of the saturation of the
emission intensity of the QDs with the increase in driving current. In addition to the illumination applications,
the maximum color gamut of using our QD-based white-light LEDs is enlarged and greater than the standard
NTSC color gamut by 47%. In conclusion, with the pulsed laser ablation method and the AJ printing techniques,
arbitrarily structural design and proportional QD addition make the developed QD white-light LEDs benefit for
the future applications both in display and lighting industries.

Methods

Femtosecond laser. An 800nm Ti:Sapphire femtosecond laser (Clark-MXR, CPA-2010) was used with the
following parameters: single pulse energy: 20 pJ, frequency: 1000 Hz, and pulse duration 100 fs. The number of
laser pulses was varied from 1 to 1000 at a single spot. The sample surface was irradiated at normal incidence by
a focused linearly polarized laser beam.

Aerosol jet spray coating. There are two special designs for the spraying mechanism. One is the
air-injection in the nozzle and intermittent spraying frequency of 5-10 Hz and the other is based on constant
stirring system.
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EL characterizations. The light intensity can be computed by integrating the light intensity in entire volume
of a sphere. The power supplies (Keithley 2400) can supply different currents to the sample and the spectrometer
can analyze the intensity of each wavelength in the sphere.
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