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Received: 13 July 2015 . Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are
Accepted: 21 March 2016 - rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest
Published: 01 April 2016 : alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze
. Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based
on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area
of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a
38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has
accumulated to 1077 km?, a value that exceeds the area of the remaining tidal flats. We divided the
Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal
flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat
area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment
and artificial siltation in the latter area. The results highlight the need for better coastal planning and
management based on tidal flat dynamics.

Tidal flats, which are those areas between land and sea, include a variety of habitat types that in temperate zones
can be divided into vegetated saltmarsh and non-vegetated mudflat. Nourished by the exchange of materials
between land masses and oceans, tidal flats provide many crucial ecosystem services. For instance, they provide
feeding grounds for migrating birds!, spawning and nursery habitats for fishes, and defense against storm surges.
They also filter pollutants, promote nutrient cycling and carbon storage, and are used for recreation, tourism, and
education. Tidal flats can also be claimed for commercial and residential use?. Tidal flats, however, are among
the world’s most vulnerable ecosystems, having lost more than 50% and as much as 80% of their original area in
many regions worldwide’. Tidal flats have been lost because of global factors like sea-level rise?, and also because
of local factors such as coastal land claim®, reduction of riverine sediment®, and land compaction and subsidence’.
The conservation and sustainable use of tidal flats would be facilitated by the development of an efficient tool for
determining the temporal and spatial changes in tidal flat area. Such a tool would be useful for a broad range of
investigations undertaken by coastal scientists, engineers, and managers®.

Nourished by the world’s third-longest and fourth-largest sediment-flux river?®, extensive tidal flats developed
in the Yangtze Estuary over the Holocene!’. These tidal flats are in decline, in part because the estuary is adjacent
to the largest economic center in China that includes 100 million people and contributes 20% to the national
Gross Domestic Product (GDP)*. High pressure from the dense population and rapid economic development has
prompted local governments to enclose and claimed tidal flats as new land resources!. The sediment flux of the
Yangtze River has dropped by 90% over the past half century due to numerous hydrological projects along the
river and its tributaries!'?. Sea-level rise and land subsidence also threaten tidal flats in the estuary, which are pre-
dicted to suffer considerable decrease in area or even complete loss in some regions'. Because of the increasing
tension between the needs of the natural system and socio-economic development in the Yangtze Estuary, many
studies have focused on the dynamics of tidal flats or land claim, at different temporal and spatial scales'*!>. By
combining the tidal flat and land claim datasets, researchers could assess the impact of land claim on tidal flats's
and provide basic data to guide policy making.
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The shoreline or waterline, which is the physical interface of land and water, changes its position continually
through time because of sediment transport and tidal cycles®. Satellites provide near-continuous monitoring
of many global shorelines, and the use of Landsat Thematic Mapper (TM)'” and Enhanced Thematic Mapper
(ETM+) imagery provides a reasonable trade-oft between temporal and spatial coverage and between spectral
resolution and cost. A range of methods have been developed to establish the location of the waterline, of which
density slice, using single or multiple bands and multispectral classification, has been the most common tech-
nique'®. Murray et al., for example, applied the Normalized Difference Water Index (NDWI) to determine the
shoreline and manually set thresholds to each image to map the tidal flats of the Yellow Sea'. In another study,
Xiao et al. developed the algorithm ‘LSWI> NDVT (LSWI, Land Surface Water Index, also called NDWI; NDVI,
Normalized Difference Vegetation Index) to identify persistent and seasonally flooded water bodies?®. Based on
the logical combination of indices, the subjective manual thresholding process could be avoided, and an auto-
matic and reproducible method could be developed to determine shoreline position'®. However, the random
interference factors (e.g., the dynamics of tidal rhythm, water turbidity, and high water content of the substrate)
make it difficult to determine tidal flat area. In this study, we mined the temporal series of Landsat images and
produced improved maps of water, mudflats, and vegetation in the coastal zone of the Yangtze Estuary. This pilot
study demonstrates the potential application of an automatic shoreline algorithm for mapping tidal flats at a large
spatial scale.

Based on Landsat imagery (path 118/row 38) covering the Yangtze Estuary, we aimed to: (1) develop a pro-
cessing tool with simple and robust algorithms for the identification of water, land, and vegetation; (2) document
the spatial-temporal dynamics of tidal flats (vegetated saltmarsh and barren mudflat) and land claim from 1984 to
2014 in two areas of the estuary (Shanghai and Jiangsu) that differ in riverine sediment supply and coastal man-
agement patterns; and (3) discuss the potential drivers of the spatial-temporal dynamics of tidal flats.

Results

Dynamics of tidal flats and land claim in the Yangtze Estuary. In the past three decades, the total
area of tidal flats in the estuary has decreased by 36% (from 1647 km? in ca. 1985 to 1047 km? in ca. 2014), com-
prising a 38% loss of saltmarshes and a 31% loss of barren mudflats (Fig. 1a—c). The total area of land claim has
reached 1077 km?, a value that exceeds the area of the remaining tidal flats. Together with expanding land claim,
the location of sea dikes has moved seaward from saltmarshes to barren mudflats and then to subtidal zones in
some regions. For example, saltmarshes represented 87% of the enclosed region in the 1980s but only 42% in the
2010s, and subtidal zones represented 13% of the enclosed region in the 1980s and 45% in the 2010s (Fig. 1d).

Comparing the dynamics of tidal flats and land claim in Shanghai and Jiangsu.  Although tidal
flats in both areas have experienced large-scale land claim, tidal flat dynamics were different in Shanghai and
Jiangsu. In Shanghai, the total area of tidal flats deceased by 16% (from 495 km? in ca. 1985 to 417 km? in ca.
2014) over the past three decades, including a 14% decline in saltmarshes (from 265km? in ca. 1985 to 227 km?
in ca. 2014) and a 17% decline in barren mudflats (from 230km? in ca. 1985 to 190km? in ca. 2014) (Fig. 2a). In
contrast, tidal flats in Jiangsu suffered a 45% loss (from 1153 km? in ca. 1985 to 630km? in ca. 2014), including a
59% loss of saltmarshes (from 155km? in ca. 1985 to 63 km? in ca. 2014) and a 43% loss of barren mudflats (from
998km? in ca. 1985 to 567 km? in ca. 2014) (Fig. 2b). During the same period, the total area of land claim was
626 km? in Shanghai and 451 km? in Jiangsu. The area of saltmarshes and barren mudflats declined by an annual
average of 1.3 and 1.3km?, respectively, in Shanghai and by 3.1 and 14.4km?, respectively, in Jiangsu. The enclosed
area increased by an annual average of 20.9 km? in Shanghai and 15.0 km? in Jiangsu. In Shanghai, the rate of land
claim increased from ca. 1990 to 1995 and from ca. 2005 to 2014 (Fig. 2c), whereas in Jiangsu, it increased from
ca. 2005 to 2010 (Fig. 2d).

Discussion

Influence of sediment deposition on the dynamics of tidal flats.  This study indicates that over one-
third of the tidal flats in the Yangtze Estuary have disappeared over the past three decades, and that saltmarshes
have suffered greater losses than barren mudflats. Although the total enclosed area was larger in Shanghai than
in Jiangsu, tidal flats have been lost at a much faster rate in Jiangsu than in Shanghai. This might be related to
differences in sediment deposition. Deposition of sediments in the estuary is a major driver for the growth or
maintenance of tidal flats, and sediment starvation will eventually cause coastal erosion or stagnation of deltaic
growth?!. The Yangtze River experienced a sharp drop in sediment flux (decline of 90%) over the past half century
due to construction of dams and waterworks on the river and its tributaries'>!'> (Supplementary Fig. S2). In the
Yangtze Estuary, bypass runoff of the north branch declined from 25% to 1% over the past century because the
trunk stream of the river has moved continually southward®. Moreover, re-suspension of sediments from erod-
ing coasts and subaqueous areas might also contribute to the growth of the tidal flats along the south branch?.
Thus, erosion of the tidal flats was greater in Jiangsu (along the north branch) than in Shanghai (along the south
branch).

To accelerate sediment deposition in the estuary, the Shanghai government has adopted a series of siltation
measures, including the planting of dense-rooted Smooth Cordgrass (Spartina alterniflora) on the tidal flats, the
construction of dikes, and the pumping of sediments from the shallow seabed. Since its introduction in the mid-
1980s, Smooth Cordgrass has spread rapidly (it now covers nearly half of the saltmarshes in the Yangtze Estuary)
and has changed the structure and functioning of local ecosystems?!. The Deep Waterway Project (1997-2005)
dredged the central portion of the south branch of the Yangtze Estuary from a depth of —6.5m to —12.5m and
deposited millions of tons of sediment onto nearby tidal flats?®. Thus, artificial siltation might mitigate the reduc-
tion of tidal flats caused by accelerated land claim. However, this will also affect the structure and stability of the
soft-bottom ecosystem, and the long-term ecological effects are unknown.
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Figure 1. The spatial and temporal dynamics of tidal flats and land claim in the Yangtze Estuary. Processed
by ArcGIS 10.1 and ENVI 5.2 (a) Location of the Yangtze Estuary (yellow box) in relation to the Yellow Sea.
Basemap Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar, Geographics, CNES/Airbus DS, USDA, USGA,
AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. Available at: http://services.
arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer. (b) The encroachment of land claim onto
barren mudflat and saltmarsh during the past three decades. Same legend as (c). (¢) Change in the areas of
barren mudflat, saltmarsh, and claimed land. The estimated area of the three land classes and 95% confidence
intervals. (d) Change in the area of enclosed habitats. ca. 8590: ca. 1985-1990, ca. 9095: ca. 1990-1995, ca. 9500:
ca. 1995-2000, ca. 0005: ca. 2000-2005, ca. 0510: ca. 2005-2010, ca. 1014: ca. 2010-2014.

Escalating tidal flat claim in the Yangtze Estuary. Over the past three decades, the land claim area
in the Yangtze Estuary has increased and the area enclosed now exceeds the remaining area of tidal flats. With
advancements in techniques and equipment, land claim has expanded seaward, from saltmarshes to barren mud-
flats, and now has encroached on the subtidal zone in some regions. Meanwhile, increases in both population
density and per capita GDP in Shanghai (Supplementary Fig. S3) have driven the demand for more land, which
may result in increased pressure to enclose land in Jiangsu. In the face of this pressure for new land, there is a need
for local governments to formulate policies for the management of tidal flat resources®.

In Shanghai, the rate of land claim increased in two periods, i.e., ca. 1990-1995 and ca. 2005-2014. The
former period was mainly influenced by the ‘enclosing the sea for farmlands’ strategy, the development of an
Economic Development Zone, and national arable land protection policies. To curb the loss of arable lands to
non-agricultural uses, the 1999 Land Administration Law stressed a dynamic balance farmland policy (no net
loss in farmland), and the National Land Management Law and the National Land Use Plan (2006-2020) pro-
posed a minimal area of 120 million hectares of national farmland. These strategies encouraged local govern-
ments to enclose tidal flats for arable land compensation. The Twelfth Five-Year National Plan in 2010 aimed
to develop the marine economy; it envisioned Shanghai as an international shipping center and the claiming of
587 km? of tidal flats till 2020. In Jiangsu, land claim began in ca. 1995 under the development strategy of ‘Marine
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Figure 2. Changes in the areas and rates of tidal flats (saltmarsh and barren mudflat) and land claim in
Shanghai and Jiangsu. (a) Changes in areas (and 95% confidence intervals) in Shanghai. (b) Changes in areas
(and 95% confidence intervals) in Jiangsu. (c) Rates of area change in Shanghai. (d) Rates of area change in
Jiangsu. The labels of horizontal axis are the same as Fig. 1d.

Sudong’ and increased suddenly from ca. 2005-2010. Functioning as a key national land reserve zone (“Twelfth
Five-Year National Plan”), Jiangsu launched the ‘Million Land Project, which will enclose a further 1,800 km? of
tidal flats according to the Jiangsu Marine Function Zoning (2006-2020)’

Sea-level rise and its impacts on low-lying coastal areas has attracted world-wide attention'>*%, and some
developed countries are adopting ‘managed realignment’ sea defense policies” rather than promoting land claim
for agricultural and industrial purposes with reinforcing sea walls, which has accelerated wetland loss in China®.
Even though the construction of sea walls and embankments is considered a form of sea defense, these con-
ventional engineering solutions are not sustainable because of the high maintenance costs, potential for land
subsidence, and the blockage of natural sediment deposition?. Tidal flats, in contrast, and especially those with
vegetated saltmarsh, provide natural sea defense in coastal regions because they can slow water flow, buffer tide
and wave energy, and bind sediments by roots, thereby reducing the capacity for erosion. However, tidal flat in the
Yangtze Estuary is likely to decrease substantially in the medium-term (2050) and long-term (2100) because of
the combined effects of sea-level rise, sediment starvation, and land subsidence'. Thus, maintaining the valuable
ecosystem services provided by tidal flats will require that rate of land claim does not exceed the rate of accretion
of tidal flats, thereby ensuring the regeneration of tidal flats®. It is now imperative that we develop sound manage-
ment policies based on the dynamics of tidal flats so that there is at least ‘no net loss’ in coastal regions.

13,26

The improvement and uncertainty of monitoring horizontal dynamics of tidal flats. A variety
of data sources are available for monitoring tidal flat dynamics®. These sources differ in many aspects, including
spatial and temporal coverage, resolution, production and acquisition costs. Many previous studies in the Yangtze
Estuary used coastal maps and charts or conducted ground surveys to study the geomorphologic changes of
tidal flats'>15. Although these methods provide high spatial resolution, they are not appropriate for large-scale
and time-series monitoring. Satellites now provide nearly continuous monitoring of many of the world’s shore-
lines', and Landsat TM/ETM+ images have been increasingly popular because of their high temporal coverage
(the revisit period is 16 days), high spatial coverage (nearly global), medium spectral resolution (30 m), and
open access®. Also, the ‘waterline technique’ (equivalent to the detection of shorelines in coastal zones) based
on satellite remote sensing is potentially a highly effective tool for studying tidal flats*!. Monitoring the horizon-
tal dynamics of tidal flats involves three main steps: developing an algorithm to determine shoreline position;
determining tidal flat area at specific periods; and determining the changes in tidal flat area over time®. Here, we
discuss how our methods have improved these three steps. We also discuss the uncertainty associated with some
of our findings.

In the past, shorelines were identified based on visible coastal imagery or on the intersection of a tidal datum
with the coastal profile. Based on satellite imagery and image-processing techniques, shorelines can now be iden-
tified from digital coastal images that are not necessarily visible to the human eye®. As for the reflectance of
wavelengths of light, the NIR and SWIR bands have been commonly used to detect the location of shorelines;
because these bands are strongly absorbed by water bodies, water bodies show a distinctively low spectral reflec-
tance in this range®*’. However, the NIR band is sensitive to turbid water®, and the SWIR band is influenced
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by remnant surface water on mudflats®’. Multi-band indices were subsequently developed to take advantage of
the reflectance of different wavelengths of light**. LSWI (also called NDWTI), which includes the NIR and green
band, is widely used to delineate open water from terrestrial environments'®*>. When mapping tidal flats of the
Yellow Sea, Murray et al. applied NDWI and manually set the threshold value for each image to determine the
shorelines®. Because NDVI can reduce the effect of suspended sediment near shorelines by using a ratio of NIR
to visible band*, Xiao et al. developed an algorithm ‘LSWI > NDVT to identify persistent and seasonally flooded
water bodies?. Because of the high water content of tidal flats, however, the algorithm ‘LSWI > NDVT cannot dis-
tinguish a mudflat from seawater; we therefore modified this algorithm to ‘LSWI>NDVI+ 0.5 i.e., we increased
the threshold for water content. The logical combination of indices also helps researchers develop an automatic
algorithm and avoid the use of a subjective and time-consuming manual threshold!®. With the improved shore-
line algorithm ‘LSWI > NDVI+ 0.5} we could identify tidal flats automatically and reproducibly. The use of a
fixed threshold, however, may result in some errors in the determination of shorelines because the reflectance of
mudflats and seawater has a continuous distribution.

To determine the distribution and extent of tidal flats at a large scale, mapping methods must solve two prob-
lems: (a) the scarcity of observed data for tide height; and (b) the variation in the position of the high-tide shore-
line'®. Murray et al. used a tide model to generate tide height for each image, and screened for images that were
in the highest and lowest 10% of the tidal range when cloud coverage was <30%°. This kind of image screening
could discard a substantial amount of useful pixel information. Determining shoreline is also limited by many
interfering factors, such as wind flows, water currents, particle grain sizes, moisture content, local slope, seawater
turbidity, dune juxtapositions, and shadows'®", such that 13.2% of the studied coastline cannot be mapped".
Given the lack of actual tide data, we used Landsat imagery and assessed all possible pixels within a 5-yr period to
determine the shorelines at the lowest tides. This process could also minimize the effects of the interfering factors
listed above. Because Landsat sensors cannot detect waterlines under dense saltmarsh vegetation, we substituted
the highest tide shorelines with artificial shorelines (which were based on visual examination of Landsat images)
as the shoreward boundaries of tidal flats. This process enables us to estimate the largest area of saltmarshes. The
accuracies of our maps were acceptable.

Given the lack of actual tide height data, it is difficult to decide whether the estimates of changing area are
caused by a different tide range at each time step or by an actual change in tidal flat area. In an attempt to solve this
problem, we used tide tables®® to assign tide heights to each Landsat image according to its acquisition date and
time (Zhongjun Port in Shanghai). Then we compared the differences of tide range between Landsat imagery and
tide tables. The results showed that the average maximum tidal range was 448.7 £ 6.2 cm for tide tables and 334.5
+ 23.7 cm for Landsat imagery (Supplementary Table S4), which indicates that the application of all Landsat
images within a 5-yr period was insufficient to detect the actual maximum extent of the tidal flats. If we focused
on the change in tidal flat area around the tidal range of 334.5 cm, however, the standard error was 23.7 cm, which
means that tides contributed 7% to the error in our estimates of tidal flat area.

Methods

Study region. Located at the junction of the Yellow Sea and East China Sea (Fig. 1a), the Yangtze Estuary is
one of the largest estuarine alluvial wetlands in the world'?. During the Holocene, about 11.6 x 10!t of sediment
accumulated in the estuary and proximal subaqueous delta, and another 5.4 x 10! t was transported southward
off the Zhejiang and Fujian coasts into the Taiwan Strait®. Tides in this estuary are typically semidiurnal, with
a mean tidal range of 2.0-3.1 m and a maximum tidal range of 4.6-6.0 m*’. The average width of the tidal flats is
1-3km, and the greatest width exceeds 10 km.

The Yangtze Estuary is divided by Chongming Island into northern and southern branches. The south-
ern branch is the main water channel, carrying 90% of the total amount of runoff and sediment into the sea
(Supplementary Fig. Sla)'!. Two administrative regions govern the Yangtze Estuary: Shanghai City on the south-
ern bank and Jiangsu Province on the northern bank. According to the presence or absence of vegetation, tidal
flats can be divided into saltmarshes and barren mudflats (Supplementary Fig. S1b-f). The main native plant
species in the saltmarshes of the Yangtze Estuary are reed (Phragmites australis) and bulrush (Scirpus spp.). Over
the past two decades, introduced Smooth Cordgrass has colonized about half of the vegetated tidal flats in the
Yangtze Estuary®.

Data acquisition and pre-processing. By downloading data from the USGS Data Center (http://glovis.
usgs.gov/), we collected all available Landsat TM and ETM+- images (651 images) for the path 118/row 38 from
1984 to 2014, including all level 1 terrain-corrected products (L1T), Level 1 Systematically Corrected (L1G), and
Systematically Terrain Corrected (L1Gt)*!. Through visual screening, we excluded three images with remarkable
deviations.

We conducted atmospheric correction on the Landsat images to acquire the surface reflectance data using
LEDAPS software*?, which has been widely used in Landsat data preprocessing® (Fig. 3). Then we generated a
time series of Landsat NDVI, LSWI, and Normalized Difference Snow Index (NDSI) datasets.

PNIR ~ PRed

Pair T Pre (1)

PNIR ~ Pswir
Py T Pswir (2)
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Figure 3. Flow chart used for the development of tidal flat and land claim maps for the Yangtze Estuary.

PGreen — Pswir
Pireen T Pswir (3)

where pgreens Pred> Pnir @0 pswig are the surface reflectance values of Band 2 (Green, 0.53-0.61 pm), Band 3
(Red, 0.63-0.69 um), Band 4 (NIR, 0.76-0.90 um), and Band 5 (SWIR, 1.55-1.75 um) in the Landsat TM/ETM+
Sensors.

To minimize interference from clouds and other weather factors, we generated three filters*: (1) ETM+
scan-line corrector (SLC)-off pixels, excluded according to their metadata; (2) Clouds and cloud shadow
were detected with the Fmask package®’; (3) Snow cover was identified with the thresholds NDSI > 0.40 and
NIR > 0.11. All bad observations were then removed from each image.

Maps of land claim.  We selected one cloudless Landsat image for each period: ca. 1985 (1984-1987); ca.
1990 (1988-1992); ca. 1995 (1993-1997); ca. 2000 (1998-2002); ca. 2005 (2003-2007); ca. 2010 (2008-2011); and
ca. 2014 (2012-2014) (Supplementary Table S1). Given the complex structures, we delineated artificial shore-
lines through visual interpretation based on the false color-composited images (musR/G/B = NIR/Red/Green)
(Supplementary Fig. S1b). Then we produced land claim maps by stacking images of artificial shorelines of suc-
cessive periods.

Maps of tidal flats (water, mudflat, and vegetation). To develop a shoreline algorithm, we screened
for images with either the highest or lowest shoreline in 1985, 1995, and 2005 and conducted a complete signa-
ture analysis of barren mudflat and seawater (Supplementary Table S2). The results showed that mudflats reflect
higher amounts of energy in NIR and SWIR than seawater at high tide but that reflectance did not strongly differ
between barren mudflat and seawater at low tide (Fig. 4a,c). Because LSWIand NDVI showed the opposite trend
between mudflat and seawater, subtracting LSWT from NDVT can highlight their difference (Fig. 4b,d,g-i). Xiao
et al. developed an algorithm ‘LSWI> NDVT to identify persistent and seasonally flooded water bodies®, but
this algorithm cannot distinguish between mudflat and seawater because of the high water content of mudflats
(Fig. 4f,j). Based on the signature analysis of LSWI — NDVT images, we found that a threshold of 0.5 could sep-
arate most mudflat areas from seawater areas (Fig. 4e). Thus, we developed the algorithm ‘LSWI > NDVI+ 0.5’
and applied a band math tool to determine the area occupied by seawater (Fig. 4k).
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Figure 4. Information used to develop an algorithm to determine shorelines in the Yangtze Estuary. Processed
by ArcGIS 10.1 and ENVI 5.2 (a) The reflectance difference of barren mudflat and seawater during low tide. Landsat
image LT51180381985052HAJ00 is used as an example. (b) The differences of NDVI, LSWI, and “LSWI - NDVT”
between barren mudflat and seawater during low tide. (c) The reflectance difference of barren mudflat and seawater
during high tide. Landsat image LT51180381985324HAJ00 is used as an example. (d) The NDVI, LSW1T, and
“LSWI— NDVT” differences of barren mudflat and seawater during high tide. (e) The use of a fixed threshold of

0.5 for “LSWI — NDVT” images for distinguishing barren mudflat from seawater. 1985L: the lowest tide shoreline

in 1985, 1995L: the lowest tide shoreline in 1995, 2005L: the lowest tide shoreline in 2005, 1985H: the highest tide
shoreline in 1985, 1995H: the highest tide shoreline in 1995, 2005H: the highest tide shoreline in 2005. (f) False
color composite Landsat image (musR/G/B = NIR/Red/Green) of LT51180381985052HAJ00. Source: the U.S.
Geological Survey. Available at: http://www.usgs.gov. (g) NDVI. (h) LSWL. (i) LSWI— NDVL. (j) LSWI > NDVI.
White indicates water, Black indicates non-water. (k) LSWI>NDVI+0.5.
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To deal with the low probability of capturing an image of low tide shorelines during satellite passage time, we
stacked all images within a 5-yr period to develop water frequency maps. Considering the water frequency of
seawater is 1, the water frequency of tidal flats should be scaled between 0-1 due to the tide cycle. Since some ran-
dom factors may reduce the water frequency of seawater and misclassify seawater into tidal flats, we adjusted the
water frequency range of tidal flats to 0-0.75. Then, we used data delineation tools to extract the observed lowest
tide shorelines. Because the high tide shoreline under dense vegetation cannot be detected through Landsat sen-
sors, the area of saltmarshes could be underestimated. In these cases, we visually delineated artificial shorelines
and considered them as the shoreward boundaries of tidal flats. We then determined the area between the artifi-
cial and lowest tide shorelines in each period, and this area was considered the maximum exposed extent of the
tidal flats. Finally, we assessed the accuracies of our maps, and the outcomes were acceptable. Then we generated
tidal flat maps based on the area between the lowest and highest tide shorelines. Barren land was defined as
‘NDVI < 0.1’ and vegetated land as NDVI> 0.1*". Based on this threshold, we further divided tidal flat maps
into saltmarsh and barren mudflat maps.

Accuracy assessment. We independently validated our maps in each period by following the validation
steps referring to Olofsson et al.*®%°. We used time series Landsat imagery and a visual approach for validation.
We also used photographs that were geographically positioned in the field using global positioning system or
downloaded from the Global Geo-Referenced Field Photo Library (http://www.eomf.ou.edu/photos), and high
spectral resolution images in Google Earth™ for the validation.

To validate our estimates of the areas of the three land classes (barren mudflat, saltmarsh, and claimed land),
we screened one Landsat image for each period at low tide at a time during the growing season (May to October)
when there were no clouds (Supplementary Fig. S1c—f). We used stratified random sampling and proportional
sample allocation to select the subset of spatial points. By requiring a standard error of 0.01 for the estimated
overall accuracy and a standard deviation of 0.7 for each class, we calculated a total sample size of 2000 for maps
of each period (Olofsson 2014, Eq. (13))* (Supplementary Fig. Sla and Table S2). Accordingly, we generated
random points in each class and made sample units as round buffers of the points (diameter 60 m).

Based on false color composite images (musR/G/B = NIR/Red/Green), we used a visual approach to create
the reference classification. Because tidal flat maps were produced by stacking all images within a 5-yr period,
and only one image for reference classification in each period, the samples classified as saltmarsh or mudflat in
maps could be labeled as pure or mixed seawater in the reference classification, simply due to the tide cycle. Thus,
in the reference classification, we deleted the pure seawater samples, and assigned the mixed seawater samples to
the corresponding classes.

Based on the sample counts of mapping and reference classification, we built an error matrix and calculated
overall, user’s, and product’s accuracies (Olofsson 2014, Eqs (1-3))* (Supplementary Table S3). By replacing the
sample counts in the error matrix with the estimated area proportions (Olofsson 2014, Eq. (4))*, we built an
estimated error matrix and calculated the estimators of accuracies and their 95% confidence intervals (Olofsson
2014, Eqs (5-7))*. Finally, we calculated the estimated proportion of area and estimated area for each class
(Olofsson 2014, Egs (8, 10, 11))*. The estimated overall accuracy across the sample set was >91%. The estimated
user’s accuracy was >96%, >64%, and >96% for barren mudflat, saltmarsh, and claimed land, respectively. The
estimated producer’s accuracy was >81%, >92%, and >94% for barren mudflat, saltmarsh, and land claim,
respectively (Supplementary Table S3).

All of the above processing was undertaken with IDL 8.4, ArcGIS 10.1 and ENVI 5.2 software.

Analyses of spatial-temporal dynamics of tidal flats and land claim.  For land claim maps showing
recent increases in the area of enclosed land, we directly obtained the increase in area between periods. Tidal flat
maps showed the remaining area, and then the change in the area of tidal flats was calculated by subtracting the
remaining area of successive periods. The rates of change in the areas of tidal flats and land claim were determined
by dividing the total change in area by the number of years in each interval. We intersected the saltmarsh or
barren mudflat maps with land claim maps and then calculated the enclosed saltmarsh and barren mudflat area
in each period. If the claimed lands were neither on saltmarsh nor on barren mudflat, we defined the enclosed
habitat as subtidal zone.
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