Table 1 Binning performance on various datasets (simulated reads, mock libraries and real samples).

From: Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes

  

No. of bins

No. of binned contigs

Precision (%)

Recall (%)

F1 (%)

Simulated dataset

10 Genomes (2,185 contigsa )

CONCOCT

19

2,185

98.78

97.67

98.2

MaxBin

10

2,125

93.16

97.17

95.1

MetaBAT

9

1,653

90.26

95.13

92.6

MyCC (default)

10

2,185

97.79

97.79

97.8

MyCC (one stage)

11

2,185

99.17

98.45

98.8

100 Genomes (8,978 contigsa )

CONCOCT

79

8,977

59.67

97.40

74.0

MaxBin

84

7,308

89.64

84.52

87.0

MetaBAT

105

5,430

92.72

89.59

91.1

MyCC (default)

93

8,978

87.45

90.54

89.0

MyCC (5p6 mer, cov)

88

8,978

89.68

94.09

91.8

Mock datasets

25 Genomes, 2 libraries (1,893 contigsa )

CONCOCT

29

1,892

72.67

97.15

83.1

MaxBin2

26

1,892

90.00

90.38

90.2

MetaBAT

31

1,742

93.78

93.57

93.7

MyCC (default)

23

1,893

88.97

97.35

93.0

MyCC (4 mer, cov)

24

1,893

95.87

97.28

96.6

64 Genomes (23,602 contigsa )

CONCOCT

84

23,585

70.63

93.90

80.6

MaxBin

56

20,639

84.96

81.83

83.4

MetaBAT

70

8,722

86.78

77.40

81.8

MyCC (default)

61

23,602

83.19

88.76

85.9

MyCC (5p6 mer, cov)

57

23,602

84.36

92.85

88.4

Real dataset

Sharon’s dataset, 18 runs (2,294 contigsa )

CONCOCT

32

2,291

79.92

97.58

87.9

GroopM

13

1,687

88.39

86.29

87.3

MaxBin2

10

2,294

82.94

93.75

88.0

MetaBAT

10

1,573

85.46

93.66

89.4

MyCC (4 mer, cov)

14

2,294

86.72

98.68

92.3

  1. aOnly contigs with a length longer or equal to 1,000 bp.