Table 1 Performance summary of the SDAE, CURVE and RANK algorithms on the lung CT dataset.

From: Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans

LUNG

ACC (%)

AUC (%)

SENS (%)

SPEC (%)

PPV (%)

NPV (%)

SDAE1 SINGLE

cv-all

87.4 ± 3.3

94.1 ± 1.9

86.3 ± 5.6

88.5 ± 4.8

86.9 ± 4.5

88.8 ± 4.1

cv1

88.6 ± 2.5

95.0 ± 2.1

88.1 ± 3.8

88.0 ± 5.5

89.2 ± 3.1

88.4 ± 4.3

cv5

87.3 ± 3.2

93.5 ± 1.9

86.9 ± 4.3

87.7 ± 5.8

87.1 ± 3.5

89.4 ± 3.6

cv10

86.6 ± 4.1

93.5 ± 1.7

87.4 ± 4.2

85.9 ± 7.4

87.3 ± 3.8

88.1 ± 4.8

CURVE1 SINGLE

cv-all

77.8 ± 2.9

86.0 ± 2.6

75.9 ± 4.9

79.6 ± 3.6

76.9 ± 3.8

78.9 ± 3.1

cv1

78.4 ± 2.3

86.1 ± 2.9

76.6 ± 4.4

80.1 ± 3.5

77.5 ± 3.2

79.5 ± 2.8

cv5

77.4 ± 4.6

86.0 ± 4.0

76.1 ± 8.2

78.6 ± 4.1

77.1 ± 6.6

78.0 ± 3.6

cv10

77.2 ± 3.1

85.7 ± 2.9

75.9 ± 5.1

78.6 ± 4.4

76.6 ± 3.9

78.1 ± 3.7

RANK1 SINGLE

cv-all

75.9 ± 3.1

81.8 ± 3.4

73.8 ± 4.9

78.0 ± 4.4

75.0 ± 3.6

77.1 ± 3.6

cv1

75.6 ± 3.5

81.5 ± 3.5

73.9 ± 5.8

77.4 ± 4.6

74.9 ± 4.3

76.7 ± 3.8

cv5

75.5 ± 1.6

81.6 ± 3.7

73.1 ± 3.8

77.9 ± 3.5

74.5±2.4

76.9 ± 2.5

Cv10

76.0 ± 3.9

82.0 ± 4.7

74.0 ± 5.3

78.0 ± 4.8

75.1 ± 4.3

77.2 ± 4.3

SDAE2 ALL

cv-all

94.4 ± 3.2

98.4 ± 1.5

90.8 ± 5.3

98.1 ± 2.2

91.6 ± 4.4

97.9 ± 2.5

cv1

95.6 ± 3.0

98.9 ± 1.0

92.4 ± 5.4

98.9 ± 1.3

93.1 ± 4.6

98.8 ± 1.4

cv5

94.6 ± 2.5

98.5 ± 1.7

90.9 ± 4.1

98.3 ± 2.3

91.6 ± 3.5

98.3 ± 2.4

cv10

93.6 ± 3.1

98.4 ± 1.1

89.9 ± 4.2

97.3 ± 2.7

90.6 ± 3.7

97.3 ± 2.9

CURVE2 ALL

cv-all

78.4 ± 2.9

85.1 ± 2.7

75.1 ± 4.5

81.7 ± 4.2

76.7 ± 3.3

80.5 ± 3.7

cv1

78.9 ± 3.1

85.0 ± 2.5

75.3 ± 6.1

82.4 ± 2.5

77.2 ± 4.3

81.1 ± 2.5

cv5

78.4 ± 3.8

85.2 ± 3.1

74.3 ± 4.8

82.6 ± 5.3

76.3 ± 3.7

81.2 ± 5.0

cv10

77.1 ± 1.5

84.7 ± 3.1

74.1 ± 4.1

80.1 ± 4.2

75.7 ± 2.1

79.1 ± 3.0

RANK2 ALL

cv-all

72.0 ± 3.5

74.6 ± 4.1

62.0 ± 5.4

82.0 ± 4.2

68.4 ± 3.3

77.6 ± 4.4

cv1

72.5 ± 3.6

74.9 ± 5.0

63.3 ± 5.5

81.7 ± 4.2

69.1 ± 3.4

77.7 ± 4.6

cv5

71.8 ± 2.9

74.4 ± 3.5

61.7 ± 4.4

81.9 ± 5.4

68.2 ± 2.4

77.6 ± 4.9

Cv10

72.0 ± 2.5

74.1 ± 2.7

61.4 ± 3.6

82.6 ± 2.8

68.2 ± 2.3

77.9 ± 3.2

MORPH MAN

cv-all

78.1 ± 3.3

86.6 ± 3.0

70.9 ± 5.1

88.5 ± 4.8

74.7 ± 3.4

83.1 ± 4.3

cv1

78.1 ± 4.1

86.5 ± 3.0

70.9 ± 4.2

88.0 ± 5.5

74.6 ± 3.5

83.1 ± 5.8

cv5

78.4 ± 3.4

86.7 ± 2.8

71.0 ± 6.9

87.7 ± 5.8

75.0 ± 4.2

83.4 ± 2.4

Cv10

78.0 ± 1.8

86.6 ± 2.3

70.7 ± 3.6

85.9 ± 7.4

74.5 ± 1.9

83.0 ± 3.8

MORPH DRLSE

cv-all

71.8 ± 3.7

76.2 ± 3.6

63.3 ± 5.7

80.4 ± 4.4

68.8 ± 3.6

76.5 ± 4.5

cv1

72.1 ± 2.8

76.3 ± 2.5

63.6 ± 5.7

80.7 ± 3.8

69.0 ± 3.3

76.8 ± 3.3

cv5

71.5 ± 5.0

76.0 ± 5.1

62.7 ± 8.4

80.3 ± 4.6

68.5 ± 5.3

76.0 ± 4.8

Cv10

71.8 ± 3.7

76.0 ± 3.4

63.4 ± 5.0

80.1 ± 4.4

68.7 ± 3.5

76.1 ± 4.1

MORPH GC

cv-all

73.3 ± 3.7

78.8 ± 3.3

66.2 ± 5.4

80.3 ± 4.8

70.5 ± 3.6

77.2 ± 4.5

cv1

73.5 ± 1.8

78.7 ± 1.7

66.7 ± 3.3

80.3 ± 3.6

70.7 ± 1.8

77.3 ± 2.8

cv5

73.6 ± 3.5

78.9 ± 3.6

66.4 ± 7.0

80.7±3.6

70.8 ± 4.0

77.5 ± 3.3

Cv10

73.1 ± 3.7

78.7 ± 3.3

66.0 ± 3.3

80.3 ± 3.6

70.3 ± 2.5

77.1 ± 3.7

CURVE1 DRLSE SINGLE

cv-all

75.7 ± 3.7

83.9 ± 3.5

67.3 ± 6.3

84.0 ± 5.0

72.2 ± 3.9

81.0 ± 4.8

cv1

76.4 ± 3.8

85.3 ± 4.1

69.0 ± 5.3

83.9 ± 5.0

73.1 ± 3.7

81.2 ± 5.2

cv5

75.8 ± 2.7

83.1 ± 3.2

67.3 ± 3.0

84.3 ± 3.0

72.0 ± 2.4

81.1 ± 3.4

Cv10

74.3 ± 3.5

83.2 ± 2.9

65.9 ± 8.7

82.7 ± 3.9

71.2 ± 5.0

79.3 ± 3.1

CURVE1 GC SINGLE

cv-all

76.3 ± 3.7

84.4 ± 3.4

67.0 ± 6.3

85.6 ± 4.8

72.3 ± 3.9

82.5 ± 4.8

cv1

78.0 ± 3.9

85.0 ± 4.0

69.7 ± 3.6

86.3 ± 5.4

74.0 ± 3.1

83.7 ± 5.8

cv5

75.9 ± 2.7

83.9±3.0

66.3 ± 5.3

85.8 ± 3.1

71.9 ± 3.3

82.2 ± 3.1

Cv10

75.4 ± 1.7

84.3 ± 2.4

65.6 ± 5.6

85.3 ± 3.6

71.4 ± 2.7

81.9 ± 2.8

RANK1 DRLSE SINGLE

cv-all

75.9 ± 4.2

82.7 ± 4.2

74.9 ± 5.9

76.9 ± 6.7

75.5 ± 4.5

76.7 ± 5.3

cv1

77.5 ± 5.2

84.0 ± 4.9

76.1 ± 5.6

78.9 ± 9.0

76.8 ± 4.7

78.9 ± 9.0

cv5

74.5 ± 3.2

81.8 ± 3.9

75.6 ± 3.8

73.4 ± 3.8

75.1 ± 3.5

73.4 ± 3.8

Cv10

76.5 ± 3.8

82.5 ± 2.7

75.7 ± 4.8

77.3 ± 5.5

76.2 ± 4.0

77.3 ± 5.5

RANK1 GC SINGLE

cv-all

75.4 ± 4.0

82.0 ± 4.0

72.1 ± 6.0

78.7 ± 5.7

74.0 ± 4.3

77.4 ± 4.8

cv1

76.2 ± 4.7

83.0 ± 5.2

71.6 ± 7.2

80.9 ± 6.2

74.2 ± 5.0

79.2 ± 6.1

cv5

75.3 ± 4.8

81.5 ± 3.0

72.9 ± 5.1

77.7 ± 7.0

74.1 ± 4.2

76.8 ± 5.7

Cv10

75.1 ± 4.1

81.6 ± 3.2

72.7 ± 5.9

77.6 ± 5.8

74.1 ± 4.3

76.6 ± 4.9

CURVE2 DRLSE ALL

cv-all

76.6 ± 3.1

85.4 ± 2.8

68.0 ± 5.5

85.2 ± 4.2

72.8 ± 3.4

82.3 ± 4.1

cv1

77.2 ± 2.7

85.3 ± 2.6

68.6 ± 5.8

85.9 ± 2.6

73.4 ± 3.4

82.9 ± 2.5

cv5

76.3 ± 3.9

85.3 ± 2.3

68.0 ± 5.5

84.6 ± 3.4

72.6 ± 3.9

81.5 ± 4.0

Cv10

76.3 ± 3.8

85.5 ± 3.6

68.0 ± 5.6

84.6 ± 5.5

72.7 ± 3.8

81.8 ± 5.2

CURVE2

cv-all

78.3 ± 3.5

85.5 ± 3.0

75.7 ± 5.5

81.0 ± 4.2

77.1 ± 4.2

80.0 ± 3.8

GC

cv1

78.6 ± 4.6

85.4 ± 3.8

76.1 ± 4.5

81.1 ± 5.8

77.3 ± 4.2

80.3 ± 5.6

ALL

cv5

78.6 ± 4.0

85.3 ± 3.2

76.3 ± 5.9

80.9 ± 3.6

77.5 ± 4.6

79.9 ± 3.7

 

Cv10

78.2 ± 4.0

85.2 ± 2.4

75.1 ± 6.5

81.3 ± 2.6

76.8 ± 4.9

80.0 ± 3.1

RANK2 DRLSE ALL

cv-all

69.1 ± 3.7

83.1 ± 3.3

48.2 ± 6.4

90.0 ± 3.8

63.6 ± 3.1

82.9 ± 5.6

cv1

69.6 ± 3.3

82.9 ± 2.6

48.7 ± 5.4

90.4 ± 3.6

63.9 ± 2.6

83.7 ± 5.4

cv5

69.1 ± 2.8

83.6 ± 2.9

48.1 ± 5.4

90.1 ± 2.8

63.5 ± ± 2.3

83.1 ± 4.1

Cv10

69.1 ± 4.2

83.2 ± 3.1

48.1 ± 7.5

90.0 ± 3.9

63.6 ± 3.7

82.9 ± 5.6

RANK2 GC ALL

cv-all

72.2 ± 3.3

83.8 ± 3.1

57.8 ± 5.8

86.5 ± 4.1

67.3 ± 3.0

81.3 ± 4.6

cv1

73.0 ± 2.2

83.9 ± 2.4

58.6 ± 4.2

87.4 ± 3.3

67.9 ± 2.2

82.5 ± 3.6

cv5

72.5 ± 2.6

83.8 ± 1.7

58.1±5.7

86.9 ± 3.4

67.6 ± 2.7

81.7 ± 3.3

Cv10

71.6 ± 2.6

84.1 ± 3.1

57.3 ± 6.2

86.0 ± 2.5

67.0 ± 2.8

80.4 ± 2.4

CURVE1 MAN SINGLE

cv-all

77.0 ± 3.6

85.9 ± 2.9

69.3 ± 5.8

84.7 ± 4.0

73.5 ± 3.9

82.0 ± 4.2

cv1

76.6 ± 4.8

85.6 ± 3.4

69.3 ± 6.5

84.3 ± 3.0

73.4 ± 4.8

81.4 ± 5.7

cv5

76.6 ± 3.7

85.6 ± 2.7

68.9 ± 6.2

84.0 ± 5.4

73.2 ± 3.0

81.4 ± 3.4

Cv10

76.4 ± 3.2

85.6 ± 2.6

68.1 ± 3.8

84.7 ± 3.6

72.7 ± 2.9

81.7 ± 4.1

RANK1 MAN SINGLE

cv-all

74.9 ± 3.3

83.9 ± 3.0

66.6 ± 5.5

83.2 ± 4.5

71.5 ± 3.4

80.0 ± 4.2

cv1

75.7 ± 3.4

83.9 ± 2.0

68.0 ± 7.6

83.4 ± 3.0

72.6 ± 4.7

80.4 ± 2.7

cv5

75.1 ± 4.3

83.9±3.3

66.9 ± 5.2

83.3 ± 5.4

71.6 ± 4.0

80.2 ± 5.5

Cv10

74.4 ± 2.1

84.0 ± 2.7

66.3 ± 5.3

82.6 ± 3.6

71.1 ± 2.8

79.3 ± 2.9

CURVE2 MAN ALL

cv-all

77.0 ± 3.6

85.9 ± 2.9

69.3 ± 5.8

84.5 ± 4.0

73.5 ± 3.9

82.0 ± 4.2

cv1

76.6 ± 4.8

85.6 ± 3.4

69.3 ± 6.5

84.0 ± 5.4

73.4 ± 4.8

81.4 ± 5.7

cv5

76.6 ± 3.7

85.6 ± 2.7

68.9 ± 6.2

84.3 ± 3.0

73.2 ± 4.0

81.4 ± 3.4

Cv10

76.4 ± 3.2

85.6 ± 2.6

68.1 ± 3.8

84.7 ± 3.6

72.7 ± 2.9

81.7 ± 4.1

RANK2 MAN ALL

cv-all

72.9 ± 3.8

83.5 ± 3.1

59.4 ± 6.0

86.7 ± 4.1

68.1 ± 3.2

81.7 ± 4.7

cv1

73.4 ± 4.0

83.6 ± 3.0

60.0 ± 6.4

87.0 ± 4.7

68.5 ± 3.8

82.3 ± 5.3

cv5

73.2 ± 3.4

84.1 ± 2.5

59.0 ± 6.5

87.4 ± 3.0

68.2 ± 3.4

82.5 ± 3.6

Cv10

73.0 ± 3.3

83.4 ± 2.9

59.4 ± 6.0

86.6 ± 4.1

68.2 ± 3.2

81.7 ± 4.7

  1. The classification performances with simple size and diameter features are also summarized in the rows denoted as MORPH. The notations “MAN”, “DRLSE”, and “GC” suggest the usage of experts’ drawings and image segmentation results from the DRLSE and GC methods, respectively, in the experiments. The rows “SDAE1”, “CURVE1”, and “RANK1” report the performance statistics of using SINGLE strategy for each algorithm, whereas the performances statistics in the rows of “SDAE2”, “CURVE2”, and “RANK2” are the results with ALL strategy in the training of each algorithm, “AUC”, “ACC”, “SENS”, “SPEC”, “PPV”, and “NPV” represents six assessment metrics: area under receiver operating characteristic curve, accuracy, sensitivity, specificity, positive predictive value, and negative predictive value, respectively. The rows “cv-all” represents the performance of each algorithm over all 100 folds, whereas the rows “cv1”, “cv5”, and “cv10” list the first, fifth, and tenth cross validations sorted by the “ACC” values of the SDAE algorithm.