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We study the entanglement structure and the topological edge states of the ground state of the spin-
1/2 XXZ model with bond alternation. We employ parity-density matrix renormalization group with
periodic boundary conditions. The finite-size scaling of Rényi entropies S, and S are used to construct
the phase diagram of the system. The phase diagram displays three possible phases: Haldane type

(an example of symmetry protected topological ordered phases), Classical Dimer and Néel phases,
the latter bounded by two continuous quantum phase transitions. The entanglement and non-locality
in the ground state are studied and quantified by the entanglement convertibility. We found that, at
small spatial scales, the ground state is not convertible within the topological Haldane dimer phase.
The phenomenology we observe can be described in terms of correlations between edge states. We
found that the entanglement spectrum also exhibits a distinctive response in the topological phase:
the effective rank of the reduced density matrix displays a specifically large “susceptibility” in the
topological phase. These findings support the idea that although the topological order in the ground
state cannot be detected by local inspection, the ground state response at local scale can tell the
topological phases apart from the non-topological phases.

Many-body quantum states are generically entangled. Consequently, considerable efforts have been made to
understand the physical implications of this simple fact2. The issue is very challenging since the entanglement
found in many-body quantum states is highly multipartite, and it is distributed in a complex form* with com-
plicated structure®. Nevertheless, important results have been obtained for characterizing quantum phases of
matter, or the phases of ground states, in terms of their entanglement®. Aside from disordered and ordered phases
characterized by a non-vanishing (local) order parameter, quantum phases with more subtle order have since
been found. This is the case of spin liquids and topologically ordered ground states’. These phases, and the phase
transitions between them, cannot be characterized within the mechanism of Landau symmetry breaking. Yet,
these phases and their phase transitions exhibit patterns of long range entanglement that implies that a correla-
tion, although tenuous, can be of global nature (respect to a local scale implied by the bare interaction)®.

In this paper, we analyze the entanglement structure of a quantum state through the entanglement converti-
bility. The latter is concerned with the conversion between quantum states through the Local Operations and
Classical Communication (LOCC). This convertibility can be used to characterize the quantum entanglement of
the states. The rationale for that is fairly simple: the convertibility properties of the state define equivalent class for
entangled states, and in each class the states of multiple copies can be transformed into one another through
LOCC which does not change the entanglement. For bipartite pure states, meaning that the system can be divided
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into two subsystems A and B, the best ratio of M'/M if M copies of |1)45) are converted into M’ copies of |t/ 45)
(entanglement of formation and entanglement of distillation) is provided by S,(p4)/S.(p’4), where S,(p,) = —
Tr(ps In p,) is the von Neuman entropy of p, = Try(|th45) (145]) and pj is the reduced state of the subsystem A
for |13 5)*'°. However, the scenario is very different when only a single copy of the state is available for converting
into another single copy of the target state through LOCC. Interestingly, in this case, it is not always possible to
convert a state exactly into another state with the same or lower entanglement using only LOCC. To quantify the
single copy entanglement conversion, we need to go beyond the informations provided by the von Neuman
entropy, and a more complete knowledge of the eigenvalues of the reduced density operator is adduced through
the Entanglement Spectrum (ES)! or, equivalently, through the Rényi entropies which provides a
re-parametrization of the ES:

1
S = In(Tr p%),
(P T (Tr p,")

(€Y)
where a > 0. The case o =1 corresponds to the von Neumann entropy. To the best of our knowledge, the single
copy entanglement conversion cannot be expressed as a simple condition on the ES if a catalyst is not involved in
the process of the conversion'®'®. The catalyst here is a bipartite state that participates in the conversion process
but remains intact after the conversion is done. In such a case, the necessary and sufficient condition for the con-
vertibility of the state |15 into [1);;) is that S op) =8 (pA) for all > 0'>13, Whether or not the catalyst is
necessary in the conversion depends on the followmg majorization condition. Suppose the eigenvalues of p, are
(Wgs Wy Wy, -++) = w, wherew, > w; > w, > ---isarranged in a non-increasing order. Similarly, the eigenvalues
of p' are (wy, Wy, Wy, ) = W If Zkﬂ) w; < Z]lo wj ! for all k, we say that w is majorized by w'!%. The conversion
from |45} to |t)15) needs a catalyst it w 1s not ma)orlzed by w'. Otherwise, the catalyst is not necessary.

In this paper, we elaborate on the idea that important informations on the entanglement structure encoded in
the quantum phases of matter is possible through the study of the response of the ES to a perturbation of the
ground state. Such a response can be rendered into specific convertibility properties of the ground state'>!6. We
study the Differential Local Convertibility (DLC), which is defined as the convertibility between two ground
states [+/(g)) and |1 (g + €)), corresponding to two Hamiltonians described by parameters gand g + € (where e
is an infinitesimal value). Such an approach has been applied to quantum phases with meaningful order parame-
ter'>"!7 and topological phases of two dimensional'®!® and one dimensional (1d)* spin models (the latter are
examples of class of spin liquids known as Symmetry-Protected Topological phases?'~?3; see refs 24-26 for an
example raised in quantum technology recently). From these studies, we found that while disordered and sym-
metry broken phases are generically convertible, the topological phases are not and they violate the DLC property.
Such property ultimately depends on the interplay between the spin-spin correlation length and the size of the
partition: When the subsystem size is smaller than the correlation length between the edges states (found at the
interface between A and B) then the edge states can dominate this convertibility. In this case, the ground state are
not DLC. In the opposite limit the states are DLC. Such picture is also confirmed by the recent study on the Kitaev
chain with a quenched chemical potential?’. Interestingly, in the cases of large partitions, it was found?® that DLC
can detect specific symmetries of the system.

Most of the current studies analyzed the quantum phase transition across two quantum phases. In this paper,
we consider a more complex phase diagram with multiple quantum phases. Specifically, we sweep trough two
consecutive quantum phase transitions, delinating three quantum phases, one of which being an Symmetry
Protected Topological Order (SPTO) phase. We believe that this is an interesting case because the occurrence of
quantum phase transitions, generally implies specific constraints on the behavior of the Rényi entropies in the
phase diagram of the system. Therefore, we expect that the presence of multiple quantum phase transitions, can
led to an “interference” effect, in particular, the slopes of the Rényi entropies and ultimately the DLC of the quan-
tum phases. To this end, we study the spin-1/2 XXZ chain with bond alternation whose phase diagram is provided
in Fig. 1(b). The techniques we employ are the parity Density Matrix Renormalization Group (pDMRG) with
periodic boundary conditions? and the correlation function matrix®***! for non-interacting fermions. We study
the DLC through an analysis of the Rényi entropies. We study the majorization condition as well. The question we
wish to study is whether we can characterize the different phases of the phase diagram in terms of the need for a
catalyst. Incidentally, we note that just like the model studied in ref. 28, our model can display an SU(2) symmetry
non-critical point within the SPTO phase. We analyze the DLC at that point to leverage the analysis carried out
in ref. 28.

The paper is organized as follows. In following section, the model of spin-1/2 XXZ chain with bond alternation
is introduced and the calculation method is summarized. In the section “Results”, the results on DLC are pre-
sented. For the topological phase, the mechanism of edge states recombination is used to interpret the inconvert-
ibility. For the Néel phase, the three-phase mechanism is used to interpret inconvertibility. Finally, the conclusion
is given. In the section “Methods”, the correlation function matrix formula is discussed in detail, and the phase
diagram is determined by the energy derivatives as well as the Rényi entropy S, and S..

Model Hamiltonian
The Hamiltonians of the 1d spin-1/2 alternating XXZ model reads

N
H=> (14 (=1)"8(0; 0,1+ 0]0) + Aoy oy, ). @
n=1
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subsystem A (2 unit cells, L,=4)

Figure 1. (a) The bond alternating spin-1/2 XXZ model with length N. The dashed ellipses define N/2 unit cells
of the system. The coupling strength of spins in the unit cell is 1 — ¢ (green lines), and between nearest units is
1+ 6 (red lines). The subsystem A contains complete unit cells. (b) The quantum phase diagram of the model

is determined by using the finite-size scaling of Rényi entropies S, (A), S, ((J) and the second derivative of
ground state energy (O). The four dashed lines denote the routes that will be swept along.

Here, @, are the Pauli matrices on the nth site of the chain with N spins. Periodic boundary conditions,
Ty, — 0pareapplied. A is the strength of the Ising-type anisotropy which originates from the spin-orbit inter-
action in magnetic materials. § is the bond alternation describing the dimerization by the spin-Peierls instability.
The ground-state phase diagram is displayed in Fig. 1(b). We remark that we have drawn it using the finite-size
scaling of Rényi entropies and the second derivative of ground state energy. Other methods such as the von
Neumann entropy and the ground-state fidelity have been used to obtain a schematic phase diagram?®. The
Hamiltonian can be experimentally realized in ion traps and optical lattices, where the bond alternation is
achieved by fine tuning the intensity of the Raman laser beams®-%*.

The isotropic limit of the model (A =1) has been studied intensively**-*’. By choosing the unit cell (site 2n — 1
and 2n), as shown in Fig. 1(a), the ground state for § > 1 (ferro-antiferromagnetic alternation) is numerically
shown®”* to approach the spin-1 Haldane system with a finite value of the non-local string order parameter. The
nearest two spins in two different unit cells tend to form a dimer (singlet) or the so-called valence bond, and the
unit cells approaches to a spin-1 chain, as described by Affleck, Kennedy, Lieb, and Tasaki®. The ground state
does not break the translational symmetry by translating a unit cell. On the other hand, a small dimerization
6> 0 breaks the translational symmetry (translating a lattice site) and opens a spin gap from the gapless Luttinger
liquid state. The ground state becomes static dimers. Since it has been shown that there is no quantum phase
transition between the dimer region (0 < § < 1) and the Haldane region (6 > 1)*’, we refer to the phase as the
Haldane-Dimer (HD) phase. On the other hand, for § <0, the unit cells tend to form dimers, and the ground state
tends to be product over all unit cells. We therefore refer to the phase as the Classical Dimers (CD). Note that after
choosing the unit cell, one can distinguish the HD from CD by studying the parity of the entanglement between
subsystem A and B (in order to detect entanglement, the subsystem A should contain complete unit cells, i.e. the
size of the subsystem A, L, should be even).

In the absence of bond alternation 6 =0, the model can be solved using the Bethe ansatz, and the ground-state
phase diagram exhibits ferromagnetic (A < —1), Luttinger liquid (—1 < A <1), and the Néel (A > 1) phases*'.
The phase boundaries for § >0 and § < 0 are symmetric by translation of elementary lattice spacing. In the limit
of A — 00, the ground state is expected to manifest the antiferromagnetic Néel order (T|7]) for 6 <1 and dou-
ble Néel order (TT]]) for 6 > 1, separated by the decoupled line § = 1. Both Néel states are nearly trivial product
states.

In this paper, we focus on studying the Differential Local Convertibility (DLC), and study the edge states in
the HD phase and the transitions from HD to the Néel phase, from CD to HD phase, as well as from CD to Néel
phase and then to HD phase. Therefore, only the region A >0and —1 < § < 1 is present. See Fig. 1(b) for the four
routes (the dashed lines) that will be swept along.

The DLC relies on the calculation of the correlation matrix of (2). By the Jordan-Wigner transformation,
Eq. (2) can be mapping into spinless fermion chain. When A =0, the model is exactly solvable®*-14243 for both
finite N and in the thermodynamic limit N — oo, see the section “Methods” for details. When A == 0, we solve it
numerically. We use the Density Matrix Renormalization Group (DMRG) method* with the recently developed
parity scheme (pDMRG)¥. The pDMRG is designed for using parity quantum numbers as well as freely selecting
boundary conditions. Of course, the effects of the boundaries vanish in thermodynamic limit. Here we comment,
however, that, besides the general implications for a faster convergence to the thermodynamic limit and benefit
for finite size scaling, our study based on DMRG with periodic boundary condition allows to examine the effects
of the edge states arising from the bipartition of the system without the interference of the boundary effects.

Unlike the quantum Monte Carlo methods which may only simulate the Rényi entropy S, with integer
a>2%% the DMRG allows to compute S, with a wide range of «. As we will present in this work, « is taken
from 1072 to 10°. The pPDMRG?® enables us to label the eigenstates of p, by the quantum numbers S; and p,, where
Si = %Zne A0, is the z-component of total spins and p,, is the parity (inversion) of the subsystem A. Thus the
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Figure 2. The differential local convertibility. (a—c) The sign of %« is plotted on the o — A plane, where S, is
the Rényi entropy of the reduced state of subsystem A with size L, =4, 8, 60 as marked in the graphs. (d-f) The

corresponding plots of ma)orlzatlon M(k) on the k— A plane. The red color denotes that —>0 (M (k) >0) and
the green color indicates that 2o < 0 (M(k) <0). The parameters are N=120, 6=0.3,¢ = 5 x 107>, In the
DMRG calculation, m =600 states are kept, with the truncation error below 10712,

eigenvalues and eigenstates of p, can be identified by (Sj, p,), which helps to better characterize the topological
system.

Results

In this section, we shall present the results of DLC within each of the phase diagram Fig. 1. In the first instance,
we study the response of the ES to the sweep. DLC is concerned with the convertibility between the ground state
[4(g)) and |1 (g + €)) of Eq. (2). The DLC can be related to the derivative of the Rényi entropies: % If the latter

g
is non-negative, then |¢(g)) can be converted to [¢)(g + €)), while the conversion changes direction otherwise.
DLC breaks down 1f % < ( changes sign with a.

We also cons1dered the majorization between |t/(g)) and |+ (g + ¢€)). In this way, we can study whether the
catalyst is needed in the convertibility. The majorization between |1)(g)) and | (g + €))is defined as

M(k) = —ij,
g] 0 (3)

where w;’s are the eigenvalues of the reduced state of the subsystem. The local conversion between [¢(g)) and
| (g + €)) without the aid of a catalyst is possible if the sign of M(k) is uniform up to 0 (see the section
“Introduction”

Sweeps along A. Here, we compute the DLC along the vertical sweep in Fig. 1.

Figure 2(a-c) show the sign of B for 0 < A <6, 1072 <a< 10%, §=0.3 and N=120. The subsystem size
L, =4, 8, 60. Figure 2(d-f) show the corresponding plots of majorization. We observe that, for a generic partition,
the ground state in the HD cannot be converted. Nevertheless, we observe that the convertibility tends to be
restored by increasing the partitions size. This phenomenon arises since the resources encoded in larger systems
increase; therefore the convertibility is enhanced. This argument applies to one of the two subsystems whose size
does not exceed N/2, as the effect of LOCC is more restricted by this subsystem rather than the other one (similar
to the Schmidt decomposition of bipartite states). In view of this property, we fix the total size of the Hamiltonian
and vary the size of subystem A.

It can be seen in Fig. 2(a—c) that for L, =4, 8, DLC breaks down when 0 < A < 3.6, while it is positive when
A 2 3.6. We notice that the critical point A a2 3.623 separates the topological phase (0 <A <A ) from the
non-topological Néel phase (A > A ). It is also found that the inconvertible region in Fig. 2(c) shrinks when
L, = N/2 increases. We will examine it numerically in the section “Methods”, where it is shown that the inconvert-
ible region disappears in the thermodynamic limit.

Combining Fig. 2(c) with 2(f), it can be seen that the local conversion needs a catalyst in most part of the top-
ological phase, except around A =0 and A = 3. In comparison, the catalyst is not necessary in the Néel phase.
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Figure 3. (a-c) The lowest four eigenvalues of the entanglement spectra, §;= — In w;, correspoding to Fig, 2(a-
¢). Each line is labelled with the quantum numbers (S5, p ,)» where S; =0, £ land Py=+1. Seealso the last
paragrpah of the section “Model Hamiltonian” The insets of (b,c) are the zoom-in of (b,c). The vertical line
denotes the critical point A, ~ 3.623 obtained by the energy derivatives.

Figure 4. The quantity W = 43%_; wf is plotted against A for L, =8, 12, 24, 60. The location of the local
minima of W, corresponding to the local maxima of S,, are defined as the pseudo-critical points A} for the finite
size scaling. The inset is the zoom-in plot.

The local conversion changes direction at the SU(2) symmetry point A =1 where the majorization shows a
mirror-like symmetry. Moreover, it is conceivable that in the thermodynamic limit the conversion direction
changes at the critical point A ~3.623. This is because the local conversion cannot increase the entanglement
which diverges at the critical point (quantified by the von Neumann entropy, see Fig. 2(c) with a=1).

In the following, we shall argue that the behavior of DLC can be understood in terms of edge states formation.
Figure 3(a—c) show the lowest four eigenvalues of the entanglement Hamiltonian Hg, e ¢ = p > for the three
cases in Fig. 2. Let us consider L, =60 first. It can be seen that the four eigenvalues of the reduced density matrix
are almost degenerate in the HD phase. See also the zoom-in plot in Fig. 3(c). Moreover, it is numerically found
that the whole ES is at least four-fold degenerate. This suggests that the reduced state of subsystem A is

approximately
29, L
Py~ 1 Q@ p, @ 1
0 — 0 —
2 2 (4)

where pyisa2"4 ™2 x 2%47? matrix whose eigenvalues are equal to four times the eigenvalues of p,. The two iden-
tical 2 x 2 matrices in Eq. (4) can be identified as the two edge states which induce the four-fold degeneracy of ES.
This identification, manifesting the edge-ES correspondence®-*, is supported by the two limiting cases below. (i)
When §=1, the model is simplified as the sum of disconnected two-body XXZ Hamiltonians. The ground state is
a tensor product of spin singlet states. If the subsystem A is chosen in such a way that both of its boundaries cut
the singlet states, its reduced state is exactly the form in Eq. (4). The state p, is a pure state composed of singlet
states of the bulk, while the other two identical matrices originate from the partial trace of the singlet states at the
boundaries. (ii) When A =0, Eq. (2) is equivalent to the Hamiltonian of non-interacting fermions, through the
Jordan-Wigner transformation. See the “Methods” for details. In this case, the reduced state of the subsystem can

be expressed as p, = e >+ up to normalization. Here &}, ¢, are the creation, annihilation operators of the
eigenmodes confined in the subsystem A with energy ;. When the subsystem is sufficiently long and its two
boundaries cut the stronger bonds (with coupling strength 1+ 6, 6 > 0), there will be two eigenmodes which are
localized about the boundaries with negligible energy, say, €, ~ €,/ 0. As a result, the reduced state p, can be
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Figure 5. The sign of Sa are plotted on the o — & plane, where S,, is the Rényi entropy of the reduced state

Of subsystem A. (a—c) The subsystem size L, =4, A=0, 1,4. (d-f) L, =60, A =0, 1, 4. The total size is N=120
(N— oo for A=0). In the DMRG calculation, m =300 states are kept for A =4, with the truncation error below
107! near the critical points, and below 107 away from the critical points.

written in the form of Eq. (4). For general cases (A =0 and §== 1), the ground state and the reduced state accord-
ingly are complex many-body states. The four-fold ES degeneracy can be used to detect the edge states’!.

In Fig. 4, the quantity W = 43, w] is plotted vs A, where N=120, L, =8, 12, 24, 60 and w/s are the eigenval-
ues of the reduced state of the subsystem A. The quantity W with a large subsystem size basically shows the purity
of the bulk py: tr ( Jox 2y a4 tr( o 2y =4 > wjz It reflects the correlation between the bulk sites and the two edges, as
interpreted below. Figure 4 shows that the purity of the bulk state increases with A to reach a maximumat A =1,
and then it starts to decrease. This behavior indicates that the bulk sites become less correlated with the two edges
when A increases to approach 1, while they do the opposite when A > 1. This point can be understood by consid-
ering the special case § = 1 where the bulk state is a pure state composed of singlet states so that the bulk sites are
completely uncorrelated with the edges. Therefore, the lowest four eigenvalues of Hy have a local minimum at
A =1, where they are closest to —In 0.25~2 1.386. See the inset of Fig. 3(c). The bifurcation occurs when A > 3.1,
showing that the four-fold ES degeneracy is partially lifted. As a consequence, Eq. (4) is no longer applicable. It’s
conceivable that the edge states start recombining, resulting in the splitting of the lowest four entanglement
spectra. In particular, {, = —In w, will decrease with A.

The above analysis is consistent with DLC in Fig. 2(c). Since lim S,(p,) = —In w,, the sign of Sa for large o

in Fig. 2 can be derived from Fig. 3(f). In addition, when o — 1, ) the Rényi entropy reduces to the von Neumann
entropy which has been shown to diverge at critical points®*->%. This result was verified in the spin-1/2 XXZ chain
with bond alternation®2.

Next, we consider L, =4, 8. Comparing Fig. 2(a,b) with (c), we find that the inconvertible region in
Fig. 2(c) increases when the subsystem size decreases. Namely, the ground state changes from convertible to
non-convertible at A that becomes smaller when L, decreases. This indicates that the edge states start recombin-
ing at smaller A when L, decreases. Note that A =1 no longer separates the positive and negative DLC regions:
all the regions in HD phase are locally inconvertible due to the recombination of edge states for small L.

In the final part of the present subsection, we shall give a physical interpretation for Fig. 3(a,b). Roughly
speaking, the term 3, Ao, 0,7, ; tends to anti-parallel the z components of neighboring spins, which has an effect
that the z components of spins of the two edges of subsystem A are also anti-parallel. Thus, the probability w; of
the eigenstates with quantum number (S3, py) =1(0,-1) of p, increases with A. These eigenstates are the
anti-parallel component of the triplet states with P, = —1. Based on this picture, the change of ES ({, = —~In w))
when A is varied, as shown in Fig. 3(a,b), can be understood. Both the Schmidt states with quantum number
0,-1) and those with (0, 1) have anti-parallel z components of spins for the two edges. The reason why the term
>n Aoy o7 prefers the former to the latter when 0 < A <1 is related to the ES level crossing at the SU(2) sym-
metry pomt A =1. We notice that due to the level crossing, the sign of the derivative of Rényi entropy flips at
A =1 for all . This means that the ES of the singlet state with quantum number (0, 1) has an extreme point at
A =1and around it a mirror-like symmetry is present?.

The reduced state of the special case A =0 is shown in Eq. (10). It can be seen in Fig. 3(a,b) that the ES split-
ting becomes smaller when A increases from 0 to 1, and then it becomes larger when A increases further. These
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Figure 6. The majorization on the k — J plane. (a—f) are the six plots of majorization corresponding to the six
plots in Fig. 5 respectively. The numerical error in the calculation of the eigenvalues of the reduced density
matrix is below 10713, The points with \Z;?:Owj(é +8) —w;(0)] < 10~"? are not shown, wheree = 5 x 107>
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Figure 7. The small-o Rényi entropies and the entanglement spectra for A =4, L, =4 and N=120. (a) The
small-o Rényi entropies (= 0.01, 0.03, 0.05, 0.07, 0.1) and (b) the entanglement spectrum, ;= —Inw;,
corresponding to Fig. 5(c). The number pairs in the legend denote the values of the quantum numbers (S3, p , ).

results indicate that there is a minimum recombination of the edge states at A = 1. Beyond the critical point, the
edge states disappear and the system goes to the Néel phase. In this phase the ground state is convertible.

Sweeps along §.  Figure 5 shows the sign of %« for —1 <§<1,102< <10, A=0, 1, 4and L, =4, 60. The
case A =0 is calculated by using the correlation matrix formalism in the section “Methods” with N — oo. For
A =1, 4, DMRG is used and N=120. The topological regime is 0 <6 <1 for A=0,1,and 0.34 $6 <1 for A =4.

Figure 5 shows that DLC cannot be achieved within the topological phase, at small sizes L,. These results
can be interpreted by the recombination of edge states (see the previous subsection). The inconvertible region
in the topological phase shrinks when L, increases, and it will disappear in the thermodynamic limit (this will
be discussed in the subsection “Methods: Phase diagram”). This phenomenon was also discussed in the previous
subsection. In contrast with the sweep along A, however, the local conversion in part of the convertible topological
phase does not need the catalyst. See Fig. 6 for the majorization. This indicates that in the large L, limit, the phases
cannot be told apart neither by looking at the necessity of the catalyst.

In contrast with the previous sweep, the DLC can be violated within the Néel phase, Fig. 5(c,f). As detailed
below, such a phenomenon arises because of the two consecutive continuous quantum phase transitions bound-
ing the Néel phase. The sweep along ¢ goes through three phases: CD, Néel and HD. Since the Rényi entropies
diverge at the two critical points § &~ £0.34 for infinite L,, there must be two maxima respectively around the
two points for large L,. Apparently, a minimum between the two maxima is present for every «, as can be seen
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in Fig. 5(f). The value of 6 corresponding to this minimum in general varies with o (unless some additional sym-
metry is present in the subsystem A, like the SU(2) at A =1 in Fig. 2(c), but it does not seem to exist here). Asa
result, that specific Néel phase may result unconvertible. For small L,, the value of a corresponding to a negative
derivative of the Rényi entropy is small: 1072,$ v < 1071. See Fig. 5(c). This is understood as the residual influence
of the above three-phase mechanism on the Rényi entropies. Figure 7(a) shows the Rényi entropy for various val-
ues of small . It can be seen that in the Néel phase, the Rényi entropy decreases very slowly for 1072 S < 107
In contrast, it decreases rapidly in the HD phase.

The behavior of the small-o Rényi entropies can be understood by inspecting the entanglement spectrum, as
shown in Fig. 7(b). It can be seen that in the Néel phase, the eigenvalues of the entanglement Hamiltonian, fj’s,
are smaller than 18. The corresponding eigenvalues of p, are larger than e 18~ 1.5 x 1078. Thus, the rank of p,
is 16 which is unchanged with 6. Also, the large &/s increase slowly with 6, as compared with their change in the
HD phase. Some of them even decreases. Since the small-« Rényi entropies are susceptible to the large &, their
slow decrease with ¢ is understood. In the HD phase, the large {/'s increases rapidly with ¢, resulting in a rapid
decrease of the effective rank of p,. The rapid decrease is a consequence of the formation of the edge states when
6 approaches 1: the small eigenvalues of p, disappears and only the four largest eigenvalues dominates. Therefore,
the small-a Rényi entropies, representing the effective rank of p,, also decrease rapidly with 6.

Discussion

In this paper, we have investigated the entanglement convertibility in the one-dimensional spin-1/2 XXZ model
with bond alternation. The phase diagram is parametrized by the Ising-type anisotropy A and the bond alter-
nation § (see Fig. 1(b)). We sweep both in A (fixed 6) and in ¢ (fixed A). The method we exploit for calculating
the Rényi entropies is the PDMRG? and the correlation function matrix formalism>**!, applied to systems with
periodic boundary condition. Such calculations are carried out by a bipartition of the system A|B with blocks
of length L,, Lp, and tracing out B. The finite-size scaling of the maximum of Rényi entropies S, with a — co
and a=2 are used to locate the critical point. It is compared with the finite-size scaling of second derivatives of
ground state energy density and they agree well. The precise ground-state phase diagram is determined.

Our results confirm that response of the entanglement spectrum is markedly different in topological and
non-topological phases: The effective rank of the reduced density matrix changes much faster in the topological
phase than in the Néel phase. As detailed below, such a phenomenon is responsible for the violation of DLC
within the topological Haldane dimer phase at small L,. Our study demonstrates how the response of the entan-
glement spectrum to the Hamiltonian parameters implies a non trivial property for the convertibility of the
ground state with Haldane order. Such a phase is also found to be characterized by a “large susceptibility” of the
effective rank of the reduced density matrix of the sub-system.

Differential Local Convertibility. Our results confirm that the DLC depends on the ratio between the
spin-spin correlation length and the size of the partition. In agreement with the ref. 28, our results obtained in
the case of large subsystems indicate that the direction of local conversion is reversed at the SU(2) symmetry
point. In agreement with the ref. 20, for a small subsystem size, the state results unconvertible within the SPTO
Haldane dimer phase, for both sweeps in A and 4. Such a result arises as a recombination of edge states as in ref.
17. The ground state results DLC within the classical Dimer phase. In contrast with the case analyzed in previous
studies, however, the DLC changes within the Néel phase. This phenomenon is a specific effect of the presence
of the two continuous quantum phase transitions bounding the Néel phase: Since the Rényi entropies diverge at
the two critical points . for infinite L, there must be two maxima respectively around the two points for large
L,. Apparently, a minimum between the two maxima is present for every o, as can be seen in Fig. 5(f). The value
of 6 corresponding to this minimum in general varies with o (unless some additional symmetry is present in the
subsystem A, like the SU(2) at A =1 in Fig. 2(c), but it does not seem to exist here). As a result, negative DLC
emerges in the Néel phase.

Majorization. We find the conversion fulfills the majorization relation in the non-topological phases. In the
sweep along ¢ in the topological phase, the conversion violates the majorization relation, even in the large L,
limit. This result indicates that the catalyst is strictly necessary in the process. In the sweep along A, however, the
catalyst seems not needed in the part of the topological phase.

Opverall, our study can provide a characterization of the topological order through the response of the entan-
glement spectrum, on a local scale. This may facilitate the experimental sought of topological order®™=>". On the
more quantum information side, our results contribute to the questions on whether topological phases univer-
sally encode more computational power than non-topological phases.

Methods
Dimerized chain of non-interacting spinless fermions. When A =0, the Hamiltonian in Eq. (2) can
be mapped to the dimerized chain of non-interacting spinless fermions*? through the Jordan-Wigner trans-
formation, and the entanglement spectrum can be computed using the correlation function matrix (CFM)
formalism®**!.

The Jordan-Wigner transformation is

j-1
v4
Cj:Ujkl | (_ak)’
=1

(5)
where o = (crj" - icrj7 )/2. Substituting Eq. (5) into Eq. (2), we have
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N-1 N
Z —1)"8)(cye iy + Cupaen) + 201+ (=D 6] ey + ) [T (1 = 2¢c). ©
n=1 j=1

Assume N is an even number and M = N/2. Since the number operator Z cf¢c. commutes with the
Hamiltonian, the eigenstates of the Hamiltonian can be solved in the subspace of consetvéd number of particles.
In particular, it will be shown later that the ground state is non-degenerate and contains M particles (i.e.
half-filled) when 6= 0. In this case, the operator [[¥_, (1 — 2¢]c;)in Eq. (6) is equal to (—1)™. Thus, we have a
free fermion chain with periodic boundary conditions (PBC) when M is odd, while the boundary condition is
anti-periodic when M is even.

Perform the Fourier transformation

1 % P 1 i”:b T
Chi_ 1= ——=) ae M, Chi = — e M7,
7] ]
M= M 7)

where p, depends on M: when M is odd, p, = 2k, otherwise p, =2k + 1. The choice of p; is to ensure that the
Fourier transformation works for both PBC and anti-PBC fermion chains. The Hamiltonian is transformed into

H= Z[ak bR (K) - U]

(8)
where R(k) = (R, (k), R (k), R,(k)), R, (k) = 2(1 — ) + 2(1 + d)cos M,R (k) = 2(1 + 6)sin P"—W R (k):

0, and o =(0,0,, 0,) is the vector of Pauli matrices. The length of R(k) is R (k) = 4 cos? T 4 62 6in? B The

Hamiltonian has two bands with energy £R(k). When 6= 0, R(k) is nonzero for all k and the two bands are
gapped. The ground state corresponds to the occupied negative-energy band ( half-filled) and it is non-degenerate.
When §=0, the Hamiltonian is gapless, since the two bands touch when M — oo (R(k) — 0 for p,/M — 1).

The topological properties of the chain can be characterized by the Berry phase® v = f dk (¢|i0,|¢), where

|¢) is the eigenvector of R(k) - o with the eigenvalue —R(k). It can be shown that = n,,m modulo 27, where
n, = % o ﬁdk = [1 + sign(6)]/2. Here 0 is the polar angle: tan(¢) = R (k)/R,(k). The quantity n,, is the wind-
ing number descrlbmg the total number of times that R(k) surrounds the origin of the (R,(k), R,(k)) parametric
space when k changes from 0 to 27. A nonzero n,, (i.e. 6 >0) defines the topological phase, where the chain with
open-boundary conditions supports two edge modes. For PBC, the reduced state of subsystem has two edge
modes when two stronger bonds are cut off. This can be derived by the CFM below.

The CFM is deﬁned asC,, (qbo\cmcn |} where |@,) is the ground state and ¢,,, = [€2—1 Cam]". It can be
P
verified that Con =~ Z e ('” " G (k), where G(k) is the CFM in momentum space’l:

1 A

where R(k) = R(k)/R(k) is a unit vector. The reduced state of subsystem A is Py = ; - Siei] % where

.
Z = tr(e” >**€1%1) is the normalization constant, g = In ,El = Y U,,.¢,» and U is the unitary matrix that

diagonalizes the CFM with elgenvalues q (i.eU [C JU isa dlagonal matrix). The reduced state p, can be writ-
ten compactly as® p , = det(I — C)e ¢ nlca-0"le , where I'is the L, x L, identity matrix and C=[C,,,].

When the subsystem is defined by cutting off two stronger bonds, there will be two zero-energy edge modes,
sayq ~ q, ~ L. We have

B o Lin o
Py= Py ® 2 oa@a-te) |2 ) ® p, ® 2
Z, 0 —+2A 0 -2
2 2 (10)
e el
where p, is the reduced state of all the eigen- modes excludmg the edge modes, Z, = tr(e 1“9708)) s posi-
h~0N= q, — 1, & = J— — (& cR), c2 = J— ( + cR) Here, cz, c; are the creation

tive and equals In -
operators of the left and nght edge modes The wave function for the edge modes can be derived from the eigen-
vectors of p, (corresponding to the eigenvalues g, ,). The form of ¢] , is consistent with the requirement that p,
commutes with the inversion symmetry operator within subsystem A. Note that Eq. (10) is a special case of
Eq. (4). Also, the two degenerate entanglement spectra at A =0 in Fig. 3(a) can be understood by inspecting the
matrix elements of the two edge states in Eq. (10).

The Rényi entropy of p, when A =0 is simplified as

Sa(pA)— q' + 1 —q)"]

1mn
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Figure 8. Extrapolation of critical points from the Rényi entropies with o =2 and o — oo for the sweeps
along A while fixing § = 0.3. The S, is related to the quantum purity which can be measured directly in the
experiment®, and S = ¢ is the lowest entanglement spectrum. The critical point A ~3.622 and 3.612 for
a=2and a— 00, with the exponents v~ 0.653 and 0.778, respectively. The black point denotes the critical
value of A ~23.623 obtained from the 2nd derivatives of ground state energy.

Phase diagram. In this subsection, we describe the methodology for getting precise phase diagram of the
model Hamiltonian. We have shown in the section “Results” that the topological states are not convertible for
a small subsystem L, =4. However, since the non-topological phase there may also present negative converti-
bility, one can not in general detect the topological transitions by examining the boundary of convertibility. We
therefore look for other quantities in the case of half-half bipartition, L, = N/2, and performing extrapolation to
the thermodynamic limit N — oco. The known literature demonstrates that Rényi entropies are logarithmically
divergent in Luttinger liquids®*®. Here, we detect the critical points via the analysis of the specific Luttinger lig-
uids encoded in the quantum critical regimes of our system® through the finite size scaling theory of the Renyi
entropies S,,. Similar scaling technique for the von Neumann entropy has been applied to finding quantum crit-
ical points in spin-1 system®"%2. We concentrate on two special cases of S,: @ — 0o and av=2, as they are closely
related to DLC in our discussion. Other values of « can also be considered, in principle.

The sign-changed point A% of DLC for infinite o, as pointed out in the Fig. 2(c). This point indicates the
beginning of the recombination of edge states. We refer to this point as the pseudo-critical point for a finite N.
When N — oo, it converges to the infinite system’s critical point. We numerically determine the pseudo-critical
point A} such that 0,8, = 9§, = 0, where & is the lowest entanglement spectrum. We note that the Schmidt
gap, G=w, — w,, or equivalently, the entanglement gap, A{ =&, — &, is used for characterizing quantum phase
transitions recently®*¢*, however we only consider S, = &, and provide a new attempt to locate quantum critical
points from the entanglement spectrum. When the system size N increases, the shift of this point represents the
shrink of the region of negative convertibility. As shown in Fig. 8, A% approaches the critical point A ~3.612 in
the thermodynamics limit N — oo. In fact, the Rényi entropies exhibit logarithmic divergence: S, xInL, in an
infinite gapless one-dimensional model®. Thus, the extreme point of Rényi entropies must converge to the same
critical point when N — co. Now we have more confidence to say that, for fixed ¢ and varying the anisotropy
parameter A with half-half bipartition, both the HD phase and Néel phase have positive convertibilities in the
thermodynamic limit.

We now consider the Rényi entropy with « = 2. There are three advantages. (i) It reflects the purity of p, as

= —In tr( pA) It is also related to the quantity W in Fig. 4 and thus the purity of the bulk state p, when Eq. (4)

t
is vahd. S, = ~In ¥~ ~In oy) . (ii) S, can be measured directly in experiments without reconstructing the

eigenvalues of p,>~’. (iii) In the quantum Monte Carlo methods, for « =1, the von Neumann entropy S, is diffi-
cult to simulate. Rényi entropies with integer a > 2, especially S, is easer to be simulated*~*’. We numerically
determine the pseudo-critical point A by locating the maximum of S,, which is also the minimum of W in Fig. 4.
As shown in Fig. 8, for §=0.3 the critical point A ~23.622 is obtained precisely.

However, when very small value of §~ 0™ is fixed, the HD phase are close to the critical Luttinger liquid for the
region A 51, and the correlation lengths are large. The typical DLC, as in Fig. 2(c), should only appear when the
subsystem size is much larger than the correlation length. This makes numerical difficulty for finding the proper
pseudo-critical point A*.The precise ground-state phase diagram for the bond alternating XXZ model, shown in
the Fig. 1(b), is determined by the above two methods and the scaling of the second derivatives of ground state
energy density which is discussed below.

According to Ehrenfest’s classification of phase transitions, the nth order quantum phase transition presents
non-analyticity of the nth derivatives of ground state energy density at the critical point. It has been firstly shown
that the 2nd derivative of ground state energy diverges at the 2nd order quantum critical point, but it remains a
finite value for the 3rd and 5th order quantum phase transitions®?. We report the results of energy derivatives for
finding the critical points of the bond-alternating XXZ model Eq. (2). The ground state energy per site

ey = Zk R (k) for A =0 can be exactly obtalned from the previous subsection. In the thermodynamic limit
N— oo, € = ——I(l — %), where I (x) = fl 4[1 — x sin® 0d0 is the complete elliptic integral of the second
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Figure 9. (a) The 2nd derivatives of ground state energy density y = —d%,/OA’ as a function of A for fixed
6=0.3 with different sizes N. (b) The extrapolation of the pseudo-critical points A*. It is obtained A a2 3.623
with the exponent v~ 0.568.

kind. When 6 =0, we have €y = — - 0se, = 0, and 8§eo — —o0. Therefore, for the case A =0, the quantum
phase transition at § = 0 belongs to second-order.
When A =0, by using DMRG, the 2nd derivative is calculated by the finite difference formula

82e0(g) ~ eo(g — €) — 2ey(g) + eog + ©)
> .

og* € (12)

Where ey(g) is the ground state energy per site, g is the parameter of the Hamiltonian Eq. (2), and € is taken to
be5x 1073,

In absence of bond alternation, § =0, it is known the system undergoes a Berezinskii-Kosterlitz-Thouless
(BKT) quantum phase transition at the critical point A = 1*. The BKT quantum phase transition is an
infinite-order transition, and the nth derivative of energy diverges only if # — co. However, the order of the tran-
sitions could be different and depend on the path in the phase diagram. It was firstly shown by Cross and Fisher®
that the ground energy density of bond-alternating Heisenberg chain is in proportion to §*?, and the 2nd deriva-
tives of energy density 9%e, oc 6. Thus the 2nd derivatives of energy density diverges and indicates a second
order quantum phase transition at § = 0. On the other hand, for varying A and fixed § = 0.3, as shown in
Fig. 9(a,b), the 2nd derivative of energy density diverges at the critical point A ~23.623 in the thermodynamic
limit N — oo. The values of the critical points obtained by the energy derivatives thus provide references for the
values determined by the Rényi entropies S, and S... The precise phase diagram determined by the energy deriv-
atives and the Rényi entropies is shown in the Fig. 1(b).
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