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A detailed characterisation of the molecular determinants of membrane binding by a.-synuclein (a.S),

a 140-residue protein whose aggregation is associated with Parkinson’s disease, is of fundamental
significance to clarify the manner in which the balance between functional and dysfunctional processes
are regulated for this protein. Despite its biological relevance, the structural nature of the membrane-
bound state oS remains elusive, in part because of the intrinsically dynamic nature of the protein and
also because of the difficulties in studying this state in a physiologically relevant environment. In the
present study we have used solid-state NMR and restrained MD simulations to refine structure and
topology of the N-terminal region of oS bound to the surface of synaptic-like membranes. This region
has fundamental importance in the binding mechanism of oS as it acts as to anchor the protein to lipid
bilayers. The results enabled the identification of the key elements for the biological properties of oS in
its membrane-bound state.

a-synuclein (aS) is a 140-residue protein that is associated with a range of highly debilitating neurodegenera-
tive conditions, of which the most common is Parkinson’s disease (PD)'~>. A hallmark of PD is the formation
of abnormal intracellular protein aggregates, known as Lewy bodies, which are largely composed of amyloid
fibrils of aS®~'°. In addition, point mutations in the aS gene and also gene duplications and triplications are
associated with early onset familial forms of PD!12, S is abundant in red blood cells'® and also localises at the
termini of neurons'. Although its function is still highly debated, it is believed to be involved in the regula-
tion of the homeostasis of synaptic vesicles during neurotransmitter release'>'%, and it is widely accepted that
a crucial role is played by the interactions of S with membranes in both physiological and pathological con-
texts'®-21. In vivo, oS is partitioned between cytosolic and membrane-associated forms, under apparently strictly
regulated equilibrium conditions?. Membrane interactions are also potent modulators of the propensity of aS to
self-assemble into amyloid fibrils, with the kinetics of aggregation being enhanced by several orders of magnitude
in some cases through the presence of lipid vesicles®. Understanding the structural and dynamical nature of the
membrane-bound state of aS is therefore a major priority in order to elucidate the balance between functional
and dysfunctional roles of this protein'>?!. The dynamic nature of S in both its cytosolic and membrane-bound
states has, however, made such studies extremely challenging.

It is widely acknowledged that oS is an intrinsically disordered monomeric protein in its physiological cyto-
solic form?*, and that membrane binding induces a transition such that specific regions of the protein adopt a sig-
nificant level of a-helical structure!®?%*-?7, This transition is favoured by a series of imperfect 11 residue repeats
encoding for amphipathic class A2 lipid-binding a-helical segments in the region spanning the first 90 residues
of the protein®. These sequence patterns enhance a promiscuous tendency to bind to a variety of lipid/deter-
gent assemblies ranging from micelles and vesicles to cellular membranes?!. Nuclear magnetic resonance (NMR)
studies involving lipids that mimic key features of synaptic vesicles have revealed that aS binds to lipid bilayers
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in a multiplicity of distinct modes?***?8. As a consequence of this variability, a range of structural architectures,
including a pair of anti-parallel a-helices (residues 3-37 and 45-92)? and a single extended «-helix (residues
9-89)%"3! have been identified in the structure of S bound to lipids. To obtain a physiologically relevant struc-
tural characterisation of the membrane-bound state of oS in the context of synaptic vesicle regulation, therefore,
it is important to select an appropriate system, and small unilamellar vesicles (SUVs) with carefully chosen mix-
tures of 1,2-dioleoyl-sn-glycero-3- phosphoethanolamine (DOPE), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine
(DOPS), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids have been shown to be excellent models
for synaptic vesicles. These SUVs, however, cannot be studied by the conventional high resolution techniques of
structural biology such as X-ray crystallography, as they do not form suitable crystals, or solution-state NMR, as
their slow tumbling rates prevent the detection of the majority of the signals from bound aS molecules. Indeed
using solution-state techniques, NMR resonances can be only detected for residues in the disordered C-terminus,
the region of the protein having the lowest membrane affinity, while resonances from the N-terminal region of the
protein that interacts strongly with membranes are essentially undetectable?%.

In order to overcome these problems, we recently employed a combination of solution and solid-state NMR
(ssNMR) methods to characterise in detail the conformational properties of the elusive membrane-bound state
of S, and to probe the nature both of its ordered and disordered regions®. The results of these studies have iden-
tified three different regions of S that play distinct and specific roles in its binding to synaptic-like SUVs. These
regions include an N-terminal ‘membrane-anchor’ segment (the initial 25 residues, for which we have assigned
by ssNMR the resonances of residues 6-25), which represents the primary binding region of oS and adopts a
stable amphipathic helical state on the lipid bilayer surface, a central ‘sensor’ region of the protein (residue 26 to
98), which serves to modulate its overall affinity for the lipid vesicles, and a C-terminal region (residue 99 to 140),
which remains largely unstructured and associated only weakly with the membrane surface®.

In the present study, we have employed chemical shifts (CS), measured using ssNMR, as restraints in molec-
ular dynamics (MD) simulations to generate a structural ensemble of the membrane-anchor region of oS bound
to synaptic-like vesicles. In particular, by using experimental ssNMR data determined for the full length pro-
tein bound to SUVs, we have characterised in atomic detail the ensemble of structures of the segment spanning
residues 1 to 30 of aS. The N-terminal region of oS is fundamental for membrane binding'>*? as it acts as a
membrane-anchor region that initiates the adhesion to the vesicle surface?. In order to identify the key struc-
tural and topological properties of this region within the full-length protein, we sampled the free energy surface
(FES) of this membrane-bound state and subsequently combined this information with paramagnetic relaxation
enhancement (PRE) measurements. The results reveal key molecular determinants of the interactions between oS
and membrane surfaces that are vital for both physiological and pathological roles of this protein.

Results

Structural ensembles of the membrane-anchor region of aS.  We characterised a structural ensem-
ble of the first 30 residues of oS bound to the surface of SUVs composed of a mixture of acidic lipids consisting of
DOPE, DOPS and DOPC lipids in a 5:3:2 molar ratio; such SUVs have been shown to be good mimics of synaptic
vesicles in composition and size?**>?¢. The structural refinement of this N-terminal region of the protein, denoted
as aS;_3), has been obtained by using experimental chemical shifts from ssNMR as restraints in ensemble-aver-
aged molecular dynamics simulations®**, employing an established protocol based on four replicas® that evolve
simultaneously starting from random conformations. Samplings were carried out for 1 ps until convergence was
observed for four parameters, namely the root mean square deviations (RMSDs) in the C* Cartesian coordinates
and in the backbone dihedral angles, the radius of gyration and the solvent accessible surface area (Fig. S1). The
resulting structural ensemble showed good agreement between the experimental chemical shifts and those calcu-
lated using highly accurate predictor, SPARTA+, which is based on a fundamentally different approach to that
of the CamShift method?® used in our structural refinement procedure (Fig. S2). The back calculations indicate
that the refined ensemble matches the experimental data with standard deviations that are within the statistical
errors of SPARTA+ (Fig. S2), providing evidence of its validity.

We then projected the ensemble of oS, 3, onto two coordinates, the C*-RMSD deviation from an ideal helical
conformation and the dipole moment of the structure, to obtain a free energy surface (FES) for this region of
aS (Fig. 1). Overall the FES shows that the conformational heterogeneity of this region of oS is very signifi-
cantly reduced when the protein is bound to lipid membranes, with this segment of the protein adopting a stable
a-helical conformation characterised by a single free energy basin centred at a C*-RMSD of 1.0 A from an ideal
helix and a dipolar moment of 1.3 e.nm. In addition to the main basin, the FES also reveals a low-population con-
formation centred on an RMSD value greater than 3.0 A from an ideal helix and a dipolar moment of ca 0.9 e.nm.

The fact that the ensemble of structures of oS, 3, in the membrane-bound state has a significant a-helical
content is in agreement with independent estimates of the helical population calculated from an algorithm using
statistical mechanics of the CS data (§2D%, Fig. 2a). Moreover, the major fluctuations in the structural ensemble
of this segment involve the five N-terminal residues and the region spanning residues 26 to 30 (Fig. 2b), in line
with previous findings that the most rigid helical region in the membrane-bound state of this segment of &S spans
residues 6 to 25%. Indeed, residues 6 to 25 show sufficient rigidity to enable a number of cross-peaks in multi-
dimensional ssNMR cross polarisation (CP) experiments to be observed, allowing assignment of its backbone
resonances®. In contrast with the present structural ensemble, the solution NMR structures of the micelle-bound
state of oS (PDB codes 1qx8 and 2kkw) occupy a region of our FES that is indicative of conformations that are
very close to the ideal a-helix (Fig. S3a). The reduced structural variability amongst the 1qx8 and 2kkw structures
(Fig. S3b), as compared with the present CS-restrained ensemble, is possibly due to the strong interactions that
asS establishes with detergent micelles, which result in very significant stabilisation of the helical conformation
(Fig. S3¢,d).
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Figure 1. Free energy surface (FES) of the membrane-bound state of S, 3. The ensemble was generated
by means of molecular dynamics simulations restrained using ssNMR chemical shifts measured for the SUV
bound state of full-length aS. The conformations are projected onto two reaction coordinates to define a two-
dimensional free energy surface. The coordinates employed are the C* root mean square deviation (RMSD)
from an ideal helix and the dipole moment of oS, 3. Residues 1 to 5 and 26 to 30 have not been included in the
calculations of the projection coordinates. The surfaces were generated by means of contour levels reproducing
isosurfaces of free energy from 0.0 (white) to —30.0 (darkest blue) kJ/mol. Two representative structural
bundles from the FES are shown.

The FES defined in the present work indicates the nature of the key interactions that stabilise the optimal
conformation of oS for membrane binding. In particular, a fundamental element of conformational stabilisation
is a network of salt bridges, with probabilities ranging from 30% to 70% within the conformational ensemble
(Fig. 2¢). These salt bridges, which are not described in the NMR structures of the micelle-bound state of oS (PDB
codes 1qx8 and 2kkw), include those formed between the pairs of residues K6/D2, K10/E13, K21/E28 and K23/
E20, although, that formed between K21 and E28 is not present in the conformations within the major basin of
the FES (Fig. S4). Another key element in the stabilisation of the amphipathic helical conformation of S, 3, is
revealed in the FES as an extended network of highly populated exposed hydrophobic patches (Figs 2d and S5).
Such hydrophobic patches are likely to stabilise the helical structure in the presence of extended hydrophobic
surfaces such as those of lipid bilayers!*?>-?7, detergent assemblies?® and water/air interfaces®. Indeed, the NMR
structures of the micelle-bound state of aS (PDB codes 1qx8 and 2kkw) describe a similar pattern of hydro-
phobic interactions, although with generally higher occupancy factors than those sampled in the present study
(Fig. S3d.e).

Accurate estimation of the topology of membrane-bound aS. A detailed characterisation of the
topological properties of the membrane-anchor region of S at the surface of SUVs is crucial for elucidating the
biological behavior of the protein. In order to characterise this fundamental aspect of the membrane bound state
of oS, we performed CS-restrained MD simulations of aS, 3, in explicit DOPE:DOPS:DOPC bilayers and explicit
waters, using simulation procedures that we have described previously®. The simulations, totalling 1 ps in length,
were restrained using experimental data measured from full length oS bound to SUVs.

The restrained simulations provide a detailed description of the energy of interaction between oS, 3, and
hydrophilic/hydrophobic regions of the DOPE:DOPS:DOPC bilayers (Fig. 3). In particular, the results indicate
the presence of strong stabilising van der Waals’ interactions between the side chains of residues M1, V3, F4, L8
and the hydrophobic groups of the lipid tails (Fig. 3b), which result from a number of intermolecular contacts
between these residues and the lipid chains (Fig. 3d). Electrostatic interactions between M1, K6, K10 and K12 and
the charged groups of the lipids are also observed, evidencing a stabilising factor for the membrane binding by the
N-terminal region of oS, 3, (Fig. 3¢), which represents a consistent key factor within different membrane binding
systems**-42, Overall these data indicate that the initial 12 residues of the protein sequence enable oS to establish
tight interactions with the membrane, including the internal hydrophobic region of the lipid bilayer. These inter-
actions were found to be associated with a tilt angle (0) of 12° (Fig. 4a) between &S, 3, and the membrane surface
suggesting a degree of partial insertion in the membrane.

The observed tilt angle of ca 12° with respect to the lipid bilayer of the helical segment of the N-terminal region
of oS requires a partial insertion of the N-terminal residues in the hydrophobic region of the membrane. In order
to obtain a detailed characterisation of this topological feature, we calculated the average positions of the amino
acid residues in the S, 3, simulations with respect to the membrane normal (Fig. S6). This analysis indicated
that residues in the region 1-12 are up to 8 A more deeply inserted into the lipid bilayer than those of the rest of
the membrane-anchor region. This is exemplified with F4 and A18, the side chains of which are both located on
the same side of the amphipathic helical conformation of oS, which show average positions on the membrane
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Figure 2. Structural properties of the aS,_;; ensemble. (a) Comparison between the population of a-helix
along the sequence of aS, 3, in the structural ensemble, calculated by using the DSSP®! program, and that
estimated from the analysis of chemical shifts by means of 62D, which estimates the populations of secondary
structure elements using a statistical mechanics approach to interpret the CS values. (b) Root mean square
fluctuations (RMSF), reporting the standard deviations of the position of C* atoms in the ensemble.

(c) Identification of salt bridges in the ensemble, calculated using a cutoff of 5.0 A between the centres of
masses of the charged groups of the sidechains. The occurrence of the salt bridges in the ensemble is color
coded from 0 (yellow) to 1 (brown). (d) Identification of hydrophobic contacts, calculated using a cutoff of

5.0 A between the centres of masses of the hydrophobic sidechains. The axes indicate residue numbers. The
occurrence of hydrophobic contacts in the ensemble is color coded from 0 (white) to 1 (dark green).

normal of 8.9 A and 16.9 A from the centre of the lipid bilayer, respectively (Fig. S6b). This analysis also reveals
that the five N-terminal residues of oS, which establish key electrostatic and van der Waals interactions with the
membrane (Fig. 3), are associated with a higher degree of variability along the membrane normal than those of
residues 6-25. This finding suggests that the local conformational heterogeneity of the region 1 to 5 is responsible
for the broadening that prevents the assignment of the resonances of these residues in 1*C-*C-DARR spectra®.
In order to gain further experimental evidence for or against the partial insertion of S into the lipid
bilayer?®, we employed paramagnetic relaxation enhancement (PRE)*** experiments to probe if transient
contacts occur between oS and the interior of the lipid bilayer. In our previous magic angle spinning (MAS)
study of aS binding to DOPE:DOPS:DOPC SUVs?*, PRE data were obtained in the presence of paramagnetic
labels placed in the hydrophilic head groups, using the gadolinium salt of 1,2-dimyristoyl-sn-glycero-3-p
hosphoethanolamine-N-diethylenetriaminepentaacetic acid, and at the position of carbon 16 of the lipid tail,
using 1-palmitoyl-2-stearoyl-[16-doxyl]-sn-glycero-3-phosphocholine. These two PRE experiments generated
marked spectral differences, with only the measurement performed by placing the spin label in the head group
of the lipid resulting in selective peak broadening in *C-*C-DARR and INEPT spectra. Based on the present
restrained simulations, indicating that the first twelve residues of aS can be partially inserted into the lipid bilayer
upon binding, we carried out PRE experiments that could probe the degree of insertion of this region by using
spin labelled lipids with unpaired electrons at the positions of carbons 5 and 10 of the lipid tail (Fig. 4b,c). In
the first case, the *C-3*C-DARR spectra (Fig. 4b) show the selective broadening of cross peaks corresponding
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Figure 3. Interaction terms between oS, 3, and a DOPE:DOPC:DOPS lipid bilayer. (a) Ribbon
representation of a representative conformation from the main basin in the FES of S, 3, (Fig. 1). Sidechains
are represented by sticks. (b—d) van der Waals” (b) and Coulomb (c) energies (kJ/mol) for the sidechain-lipid
interactions in CS-restrained simulations (see Methods). (d) Average number of sidechain-lipid contacts in
the ensemble. Contacts are identified using a cutoff of 5.0 A between the heavy atoms of the sidechains and the
lipids.

to the side chains of valine (C*-C? and C*-C® cross correlations) and lysine residues (C*-C? cross correlations).
This result suggests that these groups of the protein are spatially close to the unpaired electron at the position
of carbon 5 of the lipid tail. The paramagnetic broadening of the resonances in the ?C-1*C-DARR, however, is
almost completely absent when the PRE experiments are performed by using spin labelled lipids with unpaired
electrons at the position of carbon 10 of the lipid tail (Fig. 4c), which defines a mild level of insertion of oS into
the lipid bilayer.

Discussion

In this study, we have characterised the nature of the protein-lipid interactions that the N-terminal region of oS,
which acts to anchor the protein to membranes®, establishes with the surface of synaptic-like lipid vesicles. The
finding that resonances of this segment of oS are detectable in cross polarisation spectra measured at the magic
angle indicates that this region of oS associates with the lipid bilayer with significant affinity, despite being in
rapid equilibrium between its bound and unbound states (with a conversion rate of ca 200 ms®).

In order to define in detail the characteristics of this lipid-binding region, we generated an atomic resolution
structural ensemble of the N-terminal 30 residues of S region bound to DOPE:DOPS:DOPC SUVs by using MD
simulations restrained with experimental chemical shifts. The resulting FES reveals the structural determinants
of the interaction of this region of oS with membrane bilayers. In addition, we have probed the local topology of
this region of the protein with respect to the lipid bilayer by using both restrained MD simulations and ssNMR
PRE experiments. These studies indicate that S, 3, adopts a topology in its membrane bound state that involves a
partial insertion of the initial 12 residues into the region occupied by hydrophobic chains of the lipid bilayer. The
strong intermolecular interactions between the lipid bilayer and the N-terminal 12 residues of oS, as described
in the present study, indicate that this region plays a key role in anchoring oS on the membrane surface, which is
in line with literature results showing that the deletion of the segment 2-11 causes dramatic impairment of vesicle
binding in vitro as well as of membrane-binding and cellular toxicity in yeast**. The partial membrane insertion of
the initial 12 residues endows S with the ability to tightly bind lipid vesicles while maintaining a rapid equilib-
rium between membrane bound and unbound states. This equilibrium is thought to be strongly linked to the abil-
ity of oS to facilitate the interactions between lipid vesicles that lead to the fusion of synaptic-like SUVs in vitro?
and to the clustering of synaptic vesicles in vivo'84¢¥. The ability to promote such interactions has been associated
with the putative role of aS in the regulation of the homeostasis of synaptic vesicles at their axon terminal'”*, by
contributing to the maintenance of the optimal pool of synaptic vesicles prior to neurotransmitter release!>!64,
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Figure 4. Orientation aS,_;, bound to lipid bilayers. (a) Orientations of aS,_;, with respect to the membrane
surface in the structural ensemble generated by using CS-restrained simulations. The tilt angle is that between
the axis of the helix and its projection on the surface of the membrane. The latter is interpolated across the
phosphorus atoms of the head groups of the lipid molecules that are positioned within 10 A of any of the protein
atoms. (b) PRE of full length oS bound to DOPE:DOPS:DOPC SUVs doped with 2% of 1-palmitoyl-2-stearoyl-
[5-doxyl]-sn-glycero-3-phosphocholine, which carries an unpaired electron at the position of carbon 5 of the
lipid tail. The chemical structure of the paramagnetically labelled lipid is shown at the top of the figure. The
lower panel shows the ?C-*C-DARR spectra of the membrane-bound oS measured as described previously®
at mixing and contact times of 50 ms and 1 ms, respectively, and in the presence (black) and absence (orange)
of the paramagnetically labelled lipid. Under the conditions employed in this study, the '*C-'*C-DARR spectra
can detect the region spanning residues 6 to 25 of the membrane-bound aS. Red labels indicate the pattern

of selective peak attenuations, indicating a spatial proximity to the paramagnetic probe. (c) PRE experiments
performed using 1-palmitoyl-2-stearoyl-[10-doxyl]-sn-glycero-3-phosphocholine, which carries an unpaired
electron at position of the carbon 10 of the lipid tail.

Thus the topological and structural properties identified in the present study for the membrane-bound state of oS
provide an explanation of one of the key factors enabling oS to exert its role in the regulation of synaptic vesicles.

Under some circumstances, however, the tight binding of the N-terminal anchor to the surface of lipid
membranes can have detrimental effects by favouring the population of conformational states in which the non
amyloid-3 component (NAC) region of S, which has been associated with oS aggregation***°!, is exposed to
the solvent by partial detachment from the SUV surface. As a result, the partial insertion of residues 1-12 of o
S into lipid bilayers is potentially not only a key aspect of its functional state but is also the initial step for the
aggregation of oS at the surface of lipid vesicles?, a process that is associated with the onset and the progression
of Parkinson’s disease. Indeed, rather than actively contributing to the fibrillar core of the amyloid state of oS,
the current data suggest that the N-terminal region may play a role during the aggregation at the surface of lipid

SCIENTIFICREPORTS | 6:27125 | DOI: 10.1038/srep27125 6



www.nature.com/scientificreports/

vesicles as a result of its anchoring role to the membrane surface, which in turn enables the amyloidogenic NAC
region to exist in equilibrium between membrane-bound and membrane-detached states™. The partial detach-
ment of the NAC region from the membrane surface and the general reduction of the degrees of freedom of oS in
the membrane-bound state are favourable conditions to promote S fibrillisation via primary nucleation?. This
is model is in line with a recent ssNMR structural refinement of the oS fibrils showing that the N-terminal region
is not part of the amyloid core®2.

In conclusion, the present data indicate that the characterisation of the molecular and structural basis of the
partition between membrane bound and free states of a$ is essential to identify the underlying mechanisms of oS
function as well as the nature of the factors that lead to its central involvement in neurodegenerative disorders.

Methods
Sample purification. oS was purified in E. coli using the plasmid pT7-7 encoding for the protein as previ-
ously described®. A brief description of the protocol is provided in the Supplementary Materials.

Paramagnetic Relaxation Enhancement. PRE data were measured with magic angle spinning using
a 14.09T Bruker Ascend magnet with Avance IIT HD console and equipped with a 3.2 mm E™™¢ probe (Bruker,
Billerica, USA). Dipolar assisted rotational resonance (DARR) experiments® were performed at a MAS rate of
10.0kHz at —19°C and 4 °C (the latter for control experiments only), using a 1 ms contact time and 20 ms mix-
ing time in *C-13C cross polarization experiments. PRE data were measured by using unlabelled membranes to
measure a reference spectrum and then obtaining spectra by using paramagnetic labeled membranes doped with
2% 1-palmitoyl-2-stearoyl-[5-doxyl]-sn-glycero-3-phosphocholine or 2% 1-palmitoyl-2-stearoyl-[10-doxyl]-
sn-glycero-3-phosphocholine (Avanti Polar Inc., Alabaster, USA), which carry an unpaired electron in their doxyl
group positioned at the level of the 5" and 10" carbon atom of the lipid chain, respectively (Fig. 4b,c).

Structural ensemble refinement using chemical shift restrained MD simulations. Chemical
shifts were employed in restrained molecular dynamics simulations using the CamShift method® to refine accu-
rate structural ensembles of the anchor region of aS. These methods have been largely described in literature. A
brief description is provided in the Supplementary Materials.

The restrained molecular dynamics simulations were performed by averaging chemical shift restraints over
four replicas, as previously described®. The calculations were made using an implementation of the GROMACS
package® that allows the simulations to be restrained using the CamShift program?. Each of the four replicas
was equilibrated separately by starting from random conformations accommodated in a dodecahedron box of
276 nm® in volume. The box was filled with explicit waters and energy minimized. For each replica, the system
was thermally equilibrated during a NVT simulation of 250 ps in which the temperature was increased from 10K
to 278 K. Subsequently the pressure was equilibrated at 1 Atm for a 200 ps MD simulation. Finally, the individual
replicas were equilibrated for 1 ns long simulations.

The replica-averaged restrained molecular dynamics simulations were carried out using the following proto-
col. The four replicas evolved through a series of annealing cycles between 278 K and 350K, each cycle being com-
posed of 100 ps of simulation at 278 K followed by 100 ps of simulation in which the temperature of the system
was increased up to 350K and 100 ps of simulation carried at a constant temperature of 350 K. The final part of
the cycle allowed the system to cool slowly from 350K to 278 K in a step of 300 ps. During these cycles the exper-
imental restraints were imposed as averages over the four replicas according to equations 1-3 (Supplementary
Information). The total amount of sampling in each system simulated was 1's (250.2 ns per replica equivalent to
417 cycles). The first refinement of the structural ensemble of the anchor region of oS was performed by starting
from four random conformations generated by a single 100 ns all atom simulation (NPT ensemble run at 500 K)
starting from a linearised protein with the sequence of aS,_;,. The second ensemble, involving the interaction
with the membrane, was started by equilibrating the representative minimum in the FES generated with the first
ensemble in the presence of a pre-equilibrated membrane bilayer composed of DOPE:DOPS:DOPC lipids in a
ratio 5:3:2.

The simulations were carried out using the AMBER99sb-ILDN force field* and the Tip4pEW®® water model.
In the case of simulations performed in the presence of the lipid bilayer, we employed the parameters of the
all-atom force field defined for phosphatidylcholine lipids®’. The protonation states of pH-sensitive residues were
as follows: Arg and Lys were positively charged, Asp and Glu were negatively charged, and His had zero charge
and the net charge of the system was neutralized by the addition of Na* and Cl~ ions. A time step of 2 fs was used
together with LINCS constraints®®. The van der Waals and electrostatic interactions were cut off at 0.9 nm, and
long-range electrostatic effects were treated with the particle mesh Ewald method®. All the simulations were
carried out in the canonical ensemble by keeping the volume fixed and by setting the system temperature with the
V-rescale thermostat®. The final samplings were collected from the 278 K portions of the replica simulations after
discarding the initial 50 ns in each replica, which represented the equilibration phases of the ensemble. The total
number of conformations collected in each sampling was 13320 and convergence was tested using four different
structural parameters (Fig. S1).
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