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The ability to rapidly assess the efficacy of therapeutic strategies for incurable bone metastatic prostate
cancer is an urgent need. Pre-clinical in vivo models are limited in their ability to define the temporal
effects of therapies on simultaneous multicellular interactions in the cancer-bone microenvironment.
Integrating biological and computational modeling approaches can overcome this limitation. Here,

we generated a biologically driven discrete hybrid cellular automaton (HCA) model of bone metastatic
prostate cancer to identify the optimal therapeutic window for putative targeted therapies. As proof of
principle, we focused on TGF(3 because of its known pleiotropic cellular effects. HCA simulations predict
an optimal effect for TGF3 inhibition in a pre-metastatic setting with quantitative outputs indicating a
significant impact on prostate cancer cell viability, osteoclast formation and osteoblast differentiation.
In silico predictions were validated in vivo with models of bone metastatic prostate cancer (PAIll and
C4-2B). Analysis of human bone metastatic prostate cancer specimens reveals heterogeneous cancer
cell use of TGF(3. Patient specific information was seeded into the HCA model to predict the effect

of TGF3 inhibitor treatment on disease evolution. Collectively, we demonstrate how an integrated
computational/biological approach can rapidly optimize the efficacy of potential targeted therapies on
bone metastatic prostate cancer.

Metastatic castrate resistant prostate cancer (mCRPC) typically manifests in the skeleton and is currently incura-
ble!. In the bone microenvironment, prostate cancer cells hijack the normal bone remodeling process to create a
“vicious cycle” of extensive bone formation and destruction®. Key mechanisms facilitating the cross-talk between
the cancer and host compartment include the induction of receptor activator of nuclear kB ligand (RANKL)
expression and the release of sequestered growth factors from the bone matrix. Bone is a rich source of trans-
forming growth factor3 (TGF3) and the role for this pleiotropic factor in promoting the survival and growth
of bone metastatic cancers has been well described*>. The molecular complexity of the circuitry driving this
cycle has expanded tremendously in the past two decades revealing many potential targets for therapeutic inter-
vention. The question remains however as to how to translate these potential therapies to the clinic. Biological
experimentation and pre-clinical mouse models can be used to define the impact of putative therapies but are
limited in their ability to dissect the potential dynamic and simultaneous effects on the multi-cellular tumor-bone
microenvironment. One potential alternative approach is the integration of experimentally measured biological
parameters with computational models to tackle the multi-scale nature of the disease®. Numerous computational
models successfully demonstrate the feasibility of the approach’-'*. Starting from existing experimental or clinical
data it is possible to use statistical frameworks such as Approximate Bayesian Computation (ABC) to identify, in
a “top-down” manner, the importance of unknown parameters in disease progression by applying a distribution
of probability on those factors'>. Conversely, agent based models, such as discrete-continuum Hybrid Cellular
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Automata (HCA), are better suited to test hypotheses using a mechanistic “bottom-up” approach to provide
unbiased predictions'¢. These models work by parameterizing the properties of cells (or agents) with regards to
proliferation, apoptosis, secretion of factors, genetic mutations or even metabolism'”. The ability to apply HCA
models to two- or three-dimensional grids make them uniquely qualified for studying temporal tumor-host inter-
actions over time, especially in the context of applied therapies!>18-20,

Previously, our group generated a HCA based computational model of the bone modeling unit (BMU)
that recapitulates the homeostatic sequence of bone resorption and anabolism!®. The in silico BMU is
1000 pm x 1500 pm and is composed of bone, mesenchymal stromal cells (MSCs), precursor and adult osteo-
blasts, and precursor and mature multinucleated osteoclasts. The sequence and timing of resorption and bone
formation that emerges from the model recapitulates the extensive literature and the interactions of the cells were
carefully modeled around bone derived factors including RANKL and TGF3'8. Using human parameters based
on the growth of prostate cancer in bone we demonstrated that the introduction of an emboli of prostate cancer
cells (>9) into the BMU was sufficient to consistently initiate the vicious cycle. Subsequently, cancer-bone inter-
action could be monitored over a clinically relevant 250-day period?!. We also reported how the model could be
used to potentially optimize the effects of bisphosphonates and anti-RANKL therapies that are components of
the current standard of care. In the current study, a major objective was to use the model to explore the impact/
efficacy of putative inhibitors. Our previously published HCA model, as expected, defined an important role for
TGEB in regulating cancer-bone interaction'®.

TGEFB inhibitors such as neutralizing antibodies are currently undergoing clinical trial’>. However, their appli-
cation for the treatment of osteogenic bone metastatic prostate cancer has not been explored thus far due to the
pleiotropic and often opposing effects TGFj3 can have on cancer and bone cell behavior>*-*. Therefore, we posit
that TGF@ inhibition would be an ideal challenge for testing the predictive power of our HCA based model. Here,
using an evolved version of the HCA model, we simulated various therapeutic strategies (i.e. inhibitor concentra-
tion, time of therapeutic intervention) to predict the optimal efficacy of TGF@ inhibition. Further, the enhanced
HCA model provides new insights into how TGF3 can regulate multi-cellular interactions over time. HCA out-
puts were validated in vivo using two models of osteogenic bone metastatic prostate cancer. Moreover, using
patient specific information from bone metastatic specimens, we demonstrate the flexibility of the HCA model
in predicting the efficacy of TGFJ3 inhibitors on lesions that are heterogeneous for TGFJ utilization. Collectively,
we demonstrate how an integrated computational/biological modeling approach can be used to optimize therapy
efficacy for the treatment of bone metastatic prostate cancer.

Results

Computational modeling of TGF3 inhibition in normal bone remodeling and in bone metastatic
prostate cancer. TGEF@ is known to have concentration dependent pleiotropic effects on osteoblasts and
osteoclasts?®~28. In silico, the ability of stromal cells to respond to varying TGF@ concentrations (0.1 to 10 ng/ml)
was integrated into our HCA of normal bone remodeling, the bone multicellular unit (BMU) (see Equations 1,
2, and Table S1)'8. To obtain a realistic readout of the level of TGFf inhibition that could be achievable in vivo,
we treated mice with a TGFf3 neutralizing antibody (1D11) at a dose previously used in the literature (10 mg/kg)
and consistent with clinical trials performed for a humanized version of the 1D11 TGFj3 neutralizing antibody,
fresolimumab/GC1008%%%%, We observed that the TGFf neutralizing antibody significantly reduced circulat-
ing TGFf serum levels by up to 80% compared to IgG control treated animals (Supplementary Fig. S1). Using
phospho-SMAD?2 as a surrogate for TGFJ activity®!, we also observed that the TGF( neutralizing antibody could
inhibit TGF3 activity 50-80% in tumor naive and tumor bearing tissues (Supplementary Fig. S1 and Fig. 3f).
Based on this in vivo information, we applied the TGF3 inhibitor to the normal BMU at a level of 80% in silico.
The stochastic nature of the BMU allows for variation and statistical analysis of simulation outputs. The results
of multiple simulations (n = 29/group) show that TGF3 inhibition significantly promoted bone formation (9%
increase) over a 75-day period by enhancing osteoblast expansion and differentiation while limiting osteoclast
viability (Fig. 1a, Supplementary Fig. S1, and Table S2 ). Importantly, these in silico results are consistent with
previous in vivo studies and support the robustness of the parameters used to power the computational model*2.

The vicious cycle paradigm suggests that metastatic prostate cancer cells utilize TGF( signaling to promote
their survival and growth. We therefore seeded the computational model with TGFJ responsive prostate cancer
cells. Once the vicious cycle was established at day 80, we initiated TGF( inhibition (post-treatment scenario).
Simulations (n = 24/group) revealed that TGF( inhibition reduced cancer growth by approximately 15%, but
only when the inhibitor was applied at a constant 99% level of efficacy until day 250 (Supplementary Fig. S2 and
Video 1). At a more biologically relevant level of 80% inhibition, we observed little difference in cancer cell growth
between the control and treatment groups. Surprisingly, and in contrast to the observed effects of TGF3 inhibition
on the normal BMU, we also observed no difference in osteogenesis between the control and treatment groups
even at later stages (Supplementary Fig. S2, Table S3, and Video 1). Taken together, these results suggest that the
treatment of established and actively growing bone metastases with TGF3 inhibitors would have no impact on the
progression of the lesions unless the inhibitor was >99% effective.

A major advantage of the computational model is that it can be used to explore therapeutic windows of efficacy
for putative inhibitors. Simulations (n = 24) revealed that applying the TGF@ inhibitor in silico at day 1 prior to
the seeding of the cancer cells (pre-treatment scenario) even at a level of 20% efficacy significantly reduced tumor
burden over time by >65% (Fig 1b, Supplementary Fig. S2, Table S3, and Video 2). Interestingly, TGFf inhibition
resulted in a small but significant increase in cancer-induced osteogenesis compared to control during early tumor
progression (Day 100). However, at the end of the simulations there was significantly less cancer-induced osteo-
genesis in the TGF3 treated group compared to control (Fig. 1b, Supplementary Fig. S2, and Table S3, Day 250).
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Figure 1. In silico effects of TGFJ inhibition on normal and prostate cancer induced bone turnover (a,b)

In silico control and TGFS inhibitor treated simulations in normal (BMU, n=29/group, a) and bone metastatic
prostate cancer (PCA-Bone Mets, n = 24/group, b) scenarios. Representative images of simulation runs at
indicated time points are shown with magnified insets. TGF( inhibitor was applied at day 1 for all simulations
(pre-treatment scenario). Cell populations analyzed include mesenchymal stem cell (MSC), osteoblast
precursors (pOB), osteoblasts, osteoclast precursors (pOC) and osteoclasts. Temporal changes in bone area
(um?) were also predicted under control and TGER inhibitor conditions.

These in silico results predict that applying TGEB inhibitors in a preventative manner will reduce the growth of
metastatic prostate cancer without exacerbating cancer induced osteogenesis.

In vivo validation of computational model predictions.  Analysis of human specimens of bone met-
astatic prostate cancer derived from deidentified cancer patients at the Moffitt Cancer Center (n = 20) show
that TGEF@ ligand and receptors are expressed and pSMAD?2 staining indicates that the TGF pathway is active
(Fig. 2a). In vitro analysis of prostate cancer cell lines that can grow in the bone microenvironment identified
the PAIII cell line as reflecting the TGFf receptor and growth factor producing (TRP) status observed in human
specimens (Fig. 2b,c). We also noted that the PAIII cell line was sensitive to inhibition with TGF3 inhibitors
(Fig. 2d,e). We therefore initially chose this cell line to test computational model predictions.

Dissecting cancer cell behavior i silico illustrates TGF( inhibition directly limits growth over time by impacting
cancer cell proliferation (Fig. 3a-d). To determine the validity of the computational outputs, 6-week-old male
SCID Beige mice were pre-treated with either a TGF( inhibitor (TGF3i-1D11, 10 mg/Kg, 3 x weekly; n=10)
or an isotype control IgG (Control-13C4, 10 mg/Kg 3 x weekly; n = 8) and subsequently inoculated with
luciferase-expressing PAIII cells. Bioluminescence analysis revealed a significant reduction in tumor growth in
the TGF3 inhibitor treated group compared to controls and, as expected, reduced pSMAD2 and AKT phospho-
rylation (Fig. 3e,f). We further found significant reductions in proliferation (40%) and increases in apoptosis
(70%) between the TGF3 inhibitor treated and control groups (Fig. 3g). The HCA model is based on humanized
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Figure 2. TGF{3 expression and utilization in prostate cancer specimens and cell lines. (a) Immunofluorescence
of TGF3, TARIIL, and pSMAD?2 (red) in human (cytokeratin-green) bone metastatic prostate cancer (n = 20).
Dashed box represents area of magnification. Graphs represent intensity of pixels. Scale bars represent 100 pm.
(b,c) Real time PCR analysis of TBRI and TARII expression (b) and ELISA measurement of TGE( concentration
(c) in PAIII, C42B and PC3. (d) The effect of increasing concentrations of TGF3 inhibitor (TGF3i;

1D11 antibody) on SMAD reporter activity (RLU). (e) The effect of TGFf inhibition (TGF3i; 1D11 10 pug/ml)

on colony formation and size compared to control (Control-13C4, 10 ug/ml). Asterisks denote statistical
significance (*p < 0.05; **p < 0.01).

parameters and therefore, to compare computational model outputs to those obtained with the PAIII model, we
used a scaling approach. Briefly, using tumor growth rates from the computational model (25 day intervals) and
the animal model (2 day intervals) we calculated the slope of the line/derivative for each time point. Using this
approach, we found that derivatives for each model are similar for pre and post treatment between day 8-10 for
the animal model and day 75-100 for the in silico model. At these comparable points, the computational model
accurately predicts the impact of TGFJ inhibition on cancer cell proliferation but differences in apoptosis were
not evident in the computational model until later time points (Fig. 3d vs. 3g).

To further assess the predictive power of the computational model, we performed a TGF@ inhibitor
post-treatment study. In silico findings suggest treatment of an established TGF3 ligand and receptor-expressing
cancer (TRP) with a TGF@ inhibitor would not be of benefit. Our in vivo data confirm these predictions
(Supplementary Fig. S3).

TGFR inhibition prevents prostate cancer induced osteolysis. Because of their role in the vicious
cycle, we next focused on osteoclast behavior over time in the control and TGF3 inhibitor treated groups.
Dissection of the computational model outputs revealed the number of active bone resorbing osteoclasts were
significantly lower in the TGF3 inhibitor versus control group at day 100 (Fig. 4a). Further, the rate of osteoclast
maturation and apoptosis was significantly mitigated during this period, which is in agreement with known
effects of TGFS inhibition on osteoclast function (Fig. 4b,c)*®%. Analysis of the lytic component of our in vivo
model identified that there was approximately 50% (p =0.002) less tumor induced osteolysis in the TGF3 inhibi-
tor group compared to the controls as determined by X-ray (Fig. 4d). Histochemical analysis using the osteoclast
specific marker tartrate resistant acid phosphatase (TRAP) demonstrated that this reduction in osteolysis was due
to significantly fewer osteoclasts in the TGF( inhibitor treated group compared to the controls (Fig. 4e). These
data suggest TGFQ inhibition reduces the extent of cancer-induced osteolysis over time in vivo by limiting osteo-
clast function and validates the pre-treatment HCA model outputs.

TGF( inhibition has differential effects on normal and cancer induced bone formation. Based
on published data demonstrating that TGF3 blockade increases bone formation?, we hypothesized that inhibi-
tion of the growth factor would significantly exacerbate prostate cancer induced osteogenesis. At day 100, the
computational model does predict a small but significant increase in bone formation in the TGF3 inhibitor sim-
ulations despite a concomitant decrease in osteoblast proliferation (Fig. 5a—c and Supplementary Fig. S2). While
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Figure 3. TGF{3i pre-treatment prevents bone metastatic prostate cancer growth in silico and in vivo.

(a) Representative in silico outputs from control (left panel) and TGF@i (right panel) treated simulations at day 100.
(b-d) In silico predictions of TGFS inhibition on cancer cell growth (b), and cancer cell proliferative/apoptotic

rates (average number of proliferating/apoptotic cancer cells at 25 day intervals over a 250 day period, (c.d). (e)
Bioluminescence measurement of PAIII growth under TGF3i (1D11, 10pug/ml; n=10) or control (13C4, 10 ug/ml;
n=8) conditions. (f) pPSMAD2 and pAKT positivity (red) as a ratio of unphosphorylated protein. Scale bars, 25 pm.
(g) The proliferative and apoptotic index in TGFj3i and control tissue sections were measured using pHistone H3
and cleaved caspase-3 (c-Caspase-3) (red) respectively as a ratio to total cell number (DAPI; blue). Scale bars, 50 1
m. Asterisks denote statistical significance (*p < 0.05; **p < 0.005).

microCT (uCT) scans of tumor bearing bones did not reveal any differences between the groups (Fig. 5d), histo-
morphometry analysis does support the in silico predictions with increased bone formation in TGF3 inhibitor
treated mice and a trend towards fewer bone rimming osteoblasts (Fig. 5e,f). In contrast, we observed a robust
increase in bone formation in contralateral sham limbs derived from the TGF3 inhibitor group for all measure-
ments (Fig. 5d-f). Taken together, these in vivo data suggest that TGFf inhibition does not greatly exacerbate
prostate cancer induced osteogenesis compared to non pathological conditions and support, in part, HCA model
outputs. It is also worth noting that over a longer period (Day 250), the computational model predicts TGF3 inhi-
bition would ultimately result in decreased bone formation (Fig. 5a and Supplementary Fig. S2), a finding that
warrants further exploration in vivo.

Predicting TGF{3 inhibitor efficacy on heterogeneous bone metastatic prostate cancer. While
the majority of cancer cells in human specimens of bone metastatic prostate cancer produce both TGF@ ligand
and receptors (TRP), we also noted the presence of cancer cells that either produced the ligand alone (TP), the
receptor alone (TR) or neither (TN) (Fig. 2). This raises the question as to what the impact of TGF3 inhibition
would be on these clonal populations. We have shown that, in our hands, the C4-2B cell line produces TGF3 but
not the receptors (TP) (Fig. 2b-d). Therefore, we challenged the computational model to determine the impact
of TGF3 inhibition on a homogenous TP bone metastatic cancer and found no effect on the growth of the cancer
in pre- or-post treatment simulations (Equation 5, Supplementary Fig. S4). To test these results in vivo, C4-2B
luciferase-expressing cells were inoculated into mice that were pre- or post-treated with TGF@3 inhibitor or IgG
control and we observed no difference in tumor growth between the groups (Supplementary Fig. S4).

Clinically, human samples of bone metastatic prostate cancer are heterogeneous for their usage of TGF3
(Fig. 2a). A major advantage of the HCA modeling approach is the ability to integrate multiple clonal phenotypes
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Figure 4. TGFQ3i effects on cancer induced osteolysis. (a) Osteoclast activity in the TGFj3i and control groups
was determined in silico at 25 day intervals over a 250 day period. (b,c) The effect of TGF3i versus control on
osteoclast fusion/maturation and apoptosis over time as a ratio to total cell number. (d) Ratio of tumor volume
(measured by total area of osteolysis; TuV) to total volume (TV) in X-rays of tumor and sham tibia from TGF3i
(n=10) and control (n = 8) groups. (e) Quantitation of TRAcP (red) positive osteoclasts per tumor/bone
interface. Asterisks denote statistical significance (*p < 0.05; **p < 0.005; ***p < 0.0001).

based on patient specific information. In this regard, analysis of a single patient specimen, identified hetero-
geneous expression and activity in the TGF3 signaling axis with the following clonal ratio noted: TP 1: TRP
231: TR 6: TN 4 (Fig. 6a,b). We seeded the HCA model with this ratio of clones and performed simulations for
control, pre- and post-treatment conditions (n > 24/group) to determine the impact of TGFQ inhibition on met-
astatic prostate cancer evolution (Equations 3-6). I silico data show the effects of pre- and post- TGF3 inhibitor
treatment on clonal evolution for this patient over time and the responses of the surrounding tumor microen-
vironment (Supplementary Fig. S5, Table S4, and Video 3). The model also predicts the dominance of the TRP
clone over time under control conditions (Fig. 6¢). However, application of the TGF@ inhibitor, especially in the
pre-treatment groups at varying levels of efficacy, show how the cancer cell dynamics shift over time in favor of
other clones, in particular for the TN population (Fig. 6d—f and Table S4). These data underscore the power of the
HCA computational modeling approach in examining the temporal effects of targeted therapy on heterogeneous
cancer cells and the surrounding microenvironment.

Discussion

Current treatment options for patients diagnosed with bone metastatic castrate resistant prostate cancer include
second generation androgen deprivation therapies, radiation treatment, bisphosphonates/anti-RANKL thera-
pies, alpharadin and/or chemotherapy’. While these treatments mitigate pain, pathological fracture and increase
overall survival, the disease remains incurable with the median survival time being approximately 3-years subse-
quent to diagnosis. Increasing our knowledge of the mechanisms driving the disease can reveal novel therapeutic
targets. To this end, dozens of molecular mechanisms that play important roles in tumor-bone interaction have
been discovered**. However, dissecting how potential targeted therapies will work in the context of current treat-
ment paradigms and their translation to the clinical setting presents a major challenge. Using TGF3 inhibition
as an example, we demonstrated how a novel biologically driven computational HCA model can rapidly define
temporal cancer-bone microenvironment responses to a given therapy. Further, the integrated approach provides
insight into optimal therapeutic windows to apply a given inhibitor. For TGFf inhibition, the HCA model indi-
cates that application of the inhibitor in an adjuvant setting subsequent to the detection/treatment of aggressive
prostate cancer would be most effective.

As with biological models, there are numerous mathematical approaches to study cancer progression such as
branching and Moran processes based models, systems of ordinary and partial differential equations, and agent
based models, each with varying strengths and weaknesses®!>*>3, Data driven “top down” models “fit” existing
clinical or experimental information to identify parameters that explain the behavior of the disease’” . In the
context of prostate cancer, many elegant models have used biological parameters such as prostate specific antigen
(PSA) to predict time to progression, and to model the effects of intermittent androgen therapy?®. The tightly
regulated process of normal bone remodeling lends itself well to modeling how key factors such as RANKL and
TGFJ control the behavior and activity of bone stromal cells over time*-%. By extension, perturbing this bal-
anced ecosystem with an invasive species such as cancer can also be modeled. Our own group, as well as others,
has been exploring how bone metastatic cells and skeletal malignancies such as myeloma interact with the bone
microenvironment in order to progress'®#+%. In the current study, we used an agent-based approach that allows
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Figure 5. TGF(3iimpact on osteogenesis. (a) In silico changes in bone area (jum?) were predicted at 25-day
intervals over a 250 day period. (b,c) The effect of TGF3 inhibition on the average number of proliferative and
apoptotic osteoblasts per day in silico. (d) pCT analysis of bone volume (arrow) to total volume (BV:TV) in control
and TGFB inhibitor treated bones. (e,f) Histomorphometry analysis of osteogenesis (e) and number of bone
rimming osteoblasts (arrows; f). Asterisks denote statistical significance (*p < 0.05; **p < 0.005; ***p < 0.0001).

for the exploration of key cellular interactions over space and time in an unbiased hypothesis driven “bottom-up”
manner. We have shown how experimentally-derived cellular parameters can be integrated into the rule sets and
partial differential equations (PDEs) used to drive HCA models. This allows us to produce biologically*é and
clinically?’ testable hypotheses without making assumptions regarding population level dynamics. The result is
a model capable of generating predictions that naturally emerge from the interactions between cells and their
environment. Key to the robustness of the HCA model outputs, is the reliability of the biological parameters used
to power the PDEs. In the current study, we used human parameters to generate the HCA model?'. While we
assume that individual bone stromal cell components have similar dimensions and lifespans between the species,
human cancer cells typically grow much more slowly than human derived xenografts or animal models of the
disease?!. Therefore appropriate scaling between the models is an important consideration for the comparison of
results. Further, not all of the HCA models predictions were correct. For example, we observed the in silico effects
of TGFS inhibition on osteoblast number was discordant with in vivo results (Fig. 5b vs. 5f), suggesting that the
parameters/assumptions governing the effects of TGFf inhibition on apoptosis require re-calibration based on
the obtained biological data. This reiterative process allows for fine-tuning of the HCA.

The roles of TGFS in skeletal development and malignancy have been well described>**. However, enthusiasm
for applying TGF3 inhibitors as a therapeutic strategy to treat metastatic bone disease including mCRPC is lim-
ited because of the pleiotropic and often opposing roles TGFJ plays in normal and cancer cell biology®>242>4849,
This complexity made TGFj3 and the effects of TGF( inhibition an ideal challenge with which to test the power
of our HCA based computational model. Our results indicate the treatment of established active metastases with
a TGFJ inhibitor, unless applied at >99% efficacy, would have little or no impact on the progression of cancer
cells regardless of their dependency on TGFQ. In contrast, the application of the inhibitor in a preventative or
adjuvant manner would significantly control bone metastatic prostate cancer growth and osteogenesis. This result
was predicated on the basis that the metastatic cancer cells have an active TGFf signaling axis which we found
to be the case in the majority of human bone metastatic prostate cancer specimens. The mathematical model
was built on the assumption that TGF3, RANKL and bone derived nutrients drive cell responses. Arguably then,
interfering with TGFR signaling in the model could potentially be self-fulfilling in predicting cancer-host behav-
ior. However, despite the limited number of cytokines and growth factors included in the model, we validated
many of the model predictions with independent in vivo experiments thus reinforcing the key roles for TGF3 and
RANKL in the vicious cycle of tumor bone interaction. The majority of our in vivo results support the accuracy
of the parameters and assumptions used to power the computational model. The in vivo results are consistent
with other studies examining the role of TGFJ3 in bone metastatic cancers including prostate, breast and mel-
anoma but, importantly, underscores the potential for computational modeling in predicting the efficacy of an
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Figure 6. In silico effects of TGF3 inhibition on heterogeneous bone metastatic prostate cancer. (a) Individual
human specimen of bone metastatic prostate cancer (Patient 41458) co-stained for TGF3 (green) and TBRII
(red). (b) Graph of staining pixel intensity for each clonal population. (c-f) In silico simulations (n > 24/group)
were performed under control or TGF3 inhibition (80% efficacy) post- and pre-treatment conditions. Clonal
population was measured at Day 100 (left y-axis) and Day 250 (right y-axis). Asterisks denote statistical
significance (**p < 0.005; ****p < 0.0001).

applied targeted therapy>*-2 Although our model is centered on the roles of TGF3 and RANKL, it is important
to note that the circuitry of the HCA model can easily be expanded to include other cell types (immune cells or
cancer-associated fibroblasts) and molecules (e.g. PTHrP, BMPs) and their roles/effects subsequently explored.

While the computational model was primarily used to examine TGF@ inhibition in bone metastatic prostate
cancer, the outputs generated also revealed new insights into TGF3 biology. Firstly, the model highlights the crit-
ical role for TGF@ in the cyclical dynamics of populations such as osteoclasts and confirms the importance of the
osteoclast in initializing the vicious cycle. For example, we noted osteoclast infiltration often precedes a period of
cancer growth and osteogenesis (Video S2), a finding that could be informative for the timing of anti-resorptive
therapies as we have previously shown'®. TGEf inhibition alters these dynamics and at specific time-points can
reverse the trends between the treated and control groups so that osteoclast numbers in the control simulations
may in fact be lower than those in the TGF( inhibitor treated group (Fig. 3A). This suggests that arbitrarily
selected time-points in pre-clinical in vivo animal studies may not accurately reflect how applied therapeutics are
impacting cancer-bone interaction over time. Secondly, although TGF3 inhibition promotes robust bone forma-
tion in normal non-pathological situations, the model and our in vivo results confirm counter-intuitively that,
TGE@ inhibition does not greatly exacerbate prostate cancer induced osteogenesis.

Currently, nCRPC inter-patient heterogeneity is a major clinical challenge. Integrating biological and compu-
tational modeling offers a unique opportunity to study how cancer evolves and reacts to changing microenviron-
ments and applied targeted therapies. Patient derived xenograft (PDX) samples are being used to design precision
treatment strategies and integrating the biological parameters derived from these specimens into computational
models could prove to be a synergistic way to tackle the complexity of heterogeneity in individual patients®.
Again, using patient derived TGFf signaling axis information as an example, we demonstrated how clonal vari-
ation and evolution in response to applied TGF3 inhibitors could be incorporated into the HCA model (Fig. 6).
In these studies, we assumed the TGF3 dependent growth rates of clonal cancer cells. For personalization of the
HCA and its clinical application, individual patient specimens would have to be isolated and growth rates of var-
ious clones examined in ex vivo assays. Current advances in single cell ex vivo analyses support the feasibility of
such an approach®>%. The HCA model also allows for the optimization of inhibitor dosing and timing that in turn
could be used to generate an adaptive therapy strategy to prevent the outgrowth of resistant sub-populations?**.

In conclusion, we have developed a novel and unbiased computational HCA model that allows for the
dynamic multi-scale understanding of how metastatic prostate cancer cells evolve and interact with the sur-
rounding bone microenvironment. We used this model to predict the efficacy and response of bone metastatic
prostate cancer to targeted therapies such as, TGF@ inhibitors. Further, our integrated computational and biolog-
ical approach allowed for the dissection of how TGEFR inhibition simultaneously affects osteoblast, osteoclast and
cancer cell behavior over time. The HCA model constitutes a platform for discovery that can readily be expanded
to incorporate additional cellular and molecular circuitry. This will ultimately yield a clinical tool that will aid
the medical oncologist in designing curative strategies for heterogeneous bone metastatic prostate cancer. Most
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importantly, this modeling approach can be applied to the development of new therapeutic strategies across a
broad spectrum of human malignancies.

Methods

An HCA Model of bone metastatic prostate cancer for therapy optimization. In the compu-
tational model, each cell type responds to TGF3 levels in an either directly proportional (1 + Log(TGF(3)) or
inversely proportional (—1Log(TGF(3)) manner. TGF3 inhibition in the HCA is achieved by controlling TGF3
bioavailability (0-99% inhibition at a constant level). Computational models were seeded with homogeneous or
heterogeneous prostate cancer cells that expressed the TGF( receptor and ligand (TRP), the ligand alone (TP), the
receptor alone (TR) or were negative for both (TN). For the HCA model, we consider cellular intrinsic behaviors
and the impact of TGFS3 on these behaviors. We include 8 different cell types: resident and active cells of the bone
stroma (mesenchymal stromal cells (MSCs), precursor osteoblasts (pOB), adult osteoblasts (aOB), precursor
osteoclasts (pOC), adult osteoclasts (aOC)) and prostate cancer cells of varying TGF3 responsiveness (TRP, TGF3
ligand and receptor-producing; TR, receptor-producing; TP, ligand-producing and; TN, negative for receptor and
ligand expression). We considered interactions between all cell types and the impact of these interactions on the
tumor-bone microenvironment. Empirical, experimental and theoretical parameters were used to fuel equations
(Table S1).

Precursor Osteoblasts and Osteoclasts. Based on empirical data and literature, we assume a maximum rate of
pOB division as 36 hours based on ATCC specifications for MC3T3-E1 cells. The rate of pOB division is inversely
affected by TGF3?® and we assume that the effect is logarithmic. If TGER is at saturation levels (>10ng/ml), then
the pOB division rate tends to zero. This assumption is based on our findings of the effect of TGFS on osteoblast
precursors (Supplemental Fig. S1). If there is no TGFQ present, then the maximum rate is considered. The rate
of division has subsequent effects on the number of mature bone generating osteoblasts. By the same token, the
fusion rate of pOC is also affected inversely proportional to the availability of TGFJ3. These behaviors can be
described by:

plprecursor action) = Div ., (1 + 1/(0.1 * Log (TGES))) (1)

where 0 < TGFS3 < 1 and DiVpy s, is substituted in the case of precursor osteoblasts, Div,qp is the maximum rate
of pOB division, and in the case of precursor osteoclasts, Div,oc, the maximum rate of pOC fusion in the absence
of TGF@. This ensures that, when bone is being resorbed and TGEFf is being made bioavailable, osteoclastogenesis
is limited.

Once fused, the probability of aOC survival also depends proportionally on TGFS. This is calculated by:

p(aOC survival) = Surv,oo(—1/(0.1 * Log (TGF3))) (2)

where 0 < TGF3 < 1 and Surv, o is the maximum percentage of survival for aOCs (100% when TGF3 is as its satu-
ration level). If the levels of TGF3 are below the saturation level, the probability of death for the aOC increases™*’.

Bone metastatic prostate cancer cells.  Prostate cancer cells were explicitly defined as being dependent on TGF3
and bone derived nutrients (BDN) for their division. The probability of division was estimated as being propor-
tional to the inverse logarithm of the available BDN. If there are no nutrients, there is zero division. If there is
maximum nutrient saturation, the division rate is at its maximum.

Based on empirical data obtained with TRP cells such as PAIII, we assume that TRP cells have a maximum
division rate of once every 1.5 days and a lifespan without contact with BDN of 14 days based on low serum (2%)
soft agar assays (Supplementary Fig. S4). TRP division in response to bone derived nutrients was modeled as
follows:

p(TRP division) = Divppp(1 + 1/(0.1 * Log (BDN))) 3)

where 0 < TGFj3 < 1 and Div g, is the maximum rate of TRP division, in the saturation level of bone derived
nutrients. Under TGF3 inhibition, the maximum division rate is assumed to be reduced for TRP to once every
2 days based on empirical observations in our laboratory (data not shown).

We assume that TR has a maximum division rate of 1.75 days, but a lifespan without nutrients of 10 days,
calculated as not having a cost for producing TGF3 ligand but benefiting from the presence TGF3 in the bone
microenvironment. TR cell division depends directly on bone-derived nutrients in the same manner:

p (TR division) = Div(1 + 1/(0.1 * Log (BDN))) (4)

where 0 < BDN < 1 and Divy is the maximum rate of TR division, in the saturation level of bone derived nutri-
ents. Under TGF( inhibition, the maximum division rate is reduced for TR to once every two days.

We assume that TP has a maximum division rate of once 1.75 days, and a lifespan without nutrients of 10 days,
calculated as having a cost for producing TGF@ ligand but not benefiting from TGFQ3 contained within the bone
derived nutrients. TP cell division depends directly on bone-derived nutrients in the same manner:

p (TP division) = (Divypl 4+ 1/(0.1 * Log (BDN))) (5)

where 0 < BDN < 1 and Divp is the maximum rate of TP division. Under TGFS inhibition, the maximum divi-
sion rate of TP remains the same.
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Finally, we assume TN has a maximum division rate of once every 2 days and a lifespan without nutrients of
12 days, calculated from having no cost of producing TGF3 and no benefit from TGF@ signaling. TN cell division
depends directly on bone-derived nutrients through:

p(TN division) = (Divyyl 4+ 1/(0.1 * Log (BDN))) (6)

where 0 < BDN < 1 and Divyy is the maximum rate of TN division. Under TGFJ inhibition, the maximum divi-
sion rate of TN remains the same.

Cell Culture and Patient Specimens. Luciferase-expressing PAIII, C42B, and PC3 prostate cancer cell
lines were cultured in complete Dulbecco’s Modified medium supplemented with 10% fetal bovine serum®-¢°,
All cell lines were periodically tested for mycoplasma (#CUL001B, R&D Systems) and short tandem repeat (STR)
verified at the Moffitt Clinical Translational Research Core. De-identified tissue sections of bone metastatic pros-
tate cancer were obtained from the Moffitt tissue archives (MCC 50086).

In vivo experiments.  All animal experiments were performed with IACUC approval (R1283) and were con-
ducted in accordance with the guidelines set forth in the Guidelines for the Care and Use of Laboratory Animals
published by the National Institutes of Health. Pre-Treatment Studies: 6-week old male SCID Beige mice were
injected intraperitoneally with either TGF@ inhibitor (1D11; 10 pg/ml; n = 10/group) or isotype control, 13C4
(10 pg/ml; n = 8/group), a kind gift from Scott Lonning and Patrick Finn at Genzyme. Subsequently, luciferase
expressing PAIII or C4-2B cell lines (5 x 10% or 1 x 10° respectively in 20 ul of saline) were intratibially injected
either one-day or one week after TGF( pre-treatment®%. Contra-lateral limbs were injected with saline and
served as a positive control. Mice received TGF{3 inhibitor or IgG control injections every three days (PAIII
model) or weekly (C4-2B). Bioluminescence was measured longitudinally as a correlate of tumor growth (IVIS™
Perkin Elmer). For Post-treatment studies: mice were inoculated as described (n = 7/group), randomized and
treated upon the detection of bioluminescent signal. Mice that showed tumor growth outside of the bone com-
partment were excluded from all analyses.

A detailed description of cell assays, histological and bone morphology analyses can be found in supplemen-
tary methods. Statistical analyses were performed with GraphPad Prism and all graphs display error bars that are
SEM.
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