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Predicting episodic memory 
formation for movie events
Hanlin Tang1,2, Jed Singer1, Matias J. Ison1,3, Gnel Pivazyan4, Melissa Romaine5, Rosa Frias1, 
Elizabeth Meller1, Adrianna Boulin5, James Carroll5, Victoria Perron1, Sarah Dowcett5, 
Marlise Arellano1 & Gabriel Kreiman1,2

Episodic memories are long lasting and full of detail, yet imperfect and malleable. We quantitatively 
evaluated recollection of short audiovisual segments from movies as a proxy to real-life memory 
formation in 161 subjects at 15 minutes up to a year after encoding. Memories were reproducible within 
and across individuals, showed the typical decay with time elapsed between encoding and testing, 
were fallible yet accurate, and were insensitive to low-level stimulus manipulations but sensitive to 
high-level stimulus properties. Remarkably, memorability was also high for single movie frames, even 
one year post-encoding. To evaluate what determines the efficacy of long-term memory formation, 
we developed an extensive set of content annotations that included actions, emotional valence, visual 
cues and auditory cues. These annotations enabled us to document the content properties that showed 
a stronger correlation with recognition memory and to build a machine-learning computational model 
that accounted for episodic memory formation in single events for group averages and individual 
subjects with an accuracy of up to 80%. These results provide initial steps towards the development of a 
quantitative computational theory capable of explaining the subjective filtering steps that lead to how 
humans learn and consolidate memories.

Episodic memories constitute the essential fabric of our recollections. Our brains are continuously bombarded 
with external information but only a small fraction of these inputs is crystallized into episodic memories. There 
has been extensive work demonstrating that memories do not constitute a mere copy of input signals. Instead, 
the brain selects and interprets incoming inputs to actively construct a narrative that forms the basis of episodic 
memories (e.g. refs 1–6).

To study the formation of episodic memories under natural conditions, it is necessary to systematically define 
each episodic event and a mechanism to evaluate those memories. The extent of memory recall versus failure 
depends on multiple factors including some which are intrinsic to the subjects themselves (e.g. age, domain 
knowledge), what contents are evaluated (e.g. single items versus episodic events, meaning and context, degree 
of similarity between targets and foils), when memory is probed (particularly the time between encoding and 
testing) and how recollection is evaluated (e.g. objective versus subjective metrics)2,7,8.

Most studies in the field have focused on recollection of words, faces, objects or scenes (e.g. refs 9–15), with-
out considering the temporal and spatial context which is critical to real life memories. To understand memory 
formation under natural conditions, it is critical to incorporate the temporal and spatial contexts that lead to 
episodic events. One approach in this direction has focused on recollection of specific information within narra-
tives4,5,16,17. While several heroic efforts have examined recollection for real-life memories (e.g. refs 4,10,18–20), it 
is often difficult to systematically study real-life events due to the challenges involved in establishing ground truth, 
reproducibility, appropriate controls, amount of practice or exposure and other variables.

An interesting alternative to examining memories for real-life events involves using movies as stimuli21–23. 
Movies contain several important aspects of episodic information that are difficult to deduce from single item 
studies including temporal sequences, spatial and temporal context, affective components and an underlying 
narrative. Subjects can form vivid and detailed memories for movie events as assessed by cued recall, recognition 
and metamemory confidence estimates22,23.

There have been significant advances in our theoretical understanding of memory, including the brain struc-
tures that play a central role in memory formation (e.g. refs 24–28). Yet, we still lack computational models 
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implemented in functional algorithms that can explain what dynamic events will be remembered and make quan-
titative predictions about how subjects learn and form new memories. In order to quantitatively examine the 
relationship between event contents and the filtering events that lead to memory formation under dynamic real 
world (or close to real world) scenarios, here we systematically investigated the robustness of long-term episodic 
memory formation for movie events. We quantitatively characterized the content variables that dictate the forma-
tion of episodic memories at retention times of up to one year by combining extensive psychophysics measure-
ments and a large set of stimulus annotations. Next, we used a machine learning approach to demonstrate that a 
computational algorithm based exclusively on visual, auditory and emotional content can predict what individual 
subjects or groups of subjects do and do not remember from a movie. The computational methodology discussed 
here was recently presented during the 50th Annual Conference on Information Sciences and Systems29.

Results
We sought to systematically and quantitatively evaluate the internal and subjective filtering events that dictate 
long-term memorability of episodic events during a movie. In the main experiment, forty-one subjects watched 
a 42-minute movie (a TV series named “24”, Season 6, Episode 1) while we monitored their eye movements 
(Figs 1A and S1). Memory for specific episodic content was evaluated in 6 sessions, conducted 15 minutes to 
365 days after subjects watched the movie. Memorability was evaluated by presenting brief movie shots lasting 
between 1 and 90 frames (Methods, Fig. 1B). These movie shots were defined as the sequence of frames separated 
by cuts denoting large changes between consecutive frames (Fig. S1A). We extensively sampled recognition mem-
ory across the movie using randomly interleaved query shots.

During the recognition memory tests, shots from the target movie were intermixed with an equal proportion 
of foil shots from the next episode in the same TV series (Episode 2), which the subjects had not watched. The 
events during these two episodes are purported to take place during two consecutive hours of the day and there-
fore characters are typically wearing the same clothes, the locations and basic settings are similar, the filming style 
is the same, etc. Furthermore, the control shots from Episode 2 were matched to those in Episode 1 in terms of 
duration and visual content (Fig. S1B, Methods). Subjects performed an old/new task indicating whether they had 
seen the events in each shot during the movie presentation or not.

Figure 1.  Experimental design and performance consistency. (A) Single frame (frame 50946) from the 
movie showing eye fixations from 25 subjects (each colored circle denotes a separate subject). Note that owing 
to copyright problems, all original images have been replaced in this and all subsequent figures by very similar 
artistic renderings. (B) During each recognition memory trial, subjects were presented with a single shot (here 
from frame 55576 to frame 55601, duration = 0.833 seconds). Subjects indicated whether or not they had seen 
the events in the shot during the movie. (C) Raster plot showing the performance of each of the 41 subjects (one 
subject per row) for multiple shots from frame 55,500 to frame 56,800. Each vertical mark indicates the subject’s 
response (blue = correct, red = incorrect). Bottom: for each shot, if most subjects were correct, the height of 
the blue line indicates the percentage of subjects that were correct; if most subjects were incorrect, the height 
of the red line indicates the percentage of subjects that were incorrect (see Fig. S2 for a raster over the whole 
experiment).
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We summarize performance during the recognition memory tests by reporting the percentage of trials when 
subjects were correct (chance level = 50%). The overall percentage of correct trials combines the probability of 
hits (the probability of reporting a correct answer when the target was shown) and the probability of false alarms 
(the probability of reporting an incorrect answer when the foil was shown). 

Overall, subjects were correct in 85.6 ± 5.3% of the trials (mean ± SD). This level of performance was sta-
tistically above chance levels (50%) and below ceiling levels (100%) (p < 10−14, permutation test), providing an 
ample range to investigate which variables contribute to recognition memory. All subjects performed well above 
chance and below ceiling (Fig. S2). There was no significant difference in performance between target and foil 
trials (86.6 ± 6.8% versus 84.4 ± 7.8% respectively, p = 0.17, permutation test, Fig. 2A; in subsequent analyses 
and unless otherwise stated, data from target and foil trials were pooled). While overall recognition memory for 
shots lasting several tens of frames (30 frames/sec) could be expected based on everyday subjective experience 
and previous studies (e.g. refs 22,23), subjects also performed well above chance levels in trials containing only 
one frame (referred to as single frames, 78.2 ± 6.0%). A recent study has also demonstrated the ability to correctly 
discriminate old versus novel frames in movie streams using shorter intervals between encoding and testing21. 
The high performance in correctly recognizing single frames is reminiscent of work demonstrating a significant 
capacity to remember object details in single item studies11,12. The results reported here extend previous studies 
by demonstrating high memorability for shots and individual frames in movie events where targets and foils are 
similar across two episodes in a movie as well as high memorability in situations that are close to real life where 
the stimuli are embedded in complex spatiotemporal context dictated by the movie, as opposed to studies of 
single items.

Figure 2.  Performance increased with the number of frames and decreased with elapsed time after 
encoding. (A) Overall performance (mean ± SD, n = 41 subjects). There was no significant difference in  
overall performance between target trials (T) or foil trials (F) (non-parametric permutation test, p = 0.17).  
(B) Performance increased with the number of frames in the shot (r = 0.97, p < 10−10). Bin size = 30 frames; 
results are shown in the center of each bin. (C) Performance for shots decreased with elapsed time after 
encoding (r = −0.96, p = 0.001). Note that the scale on the x-axis is not linear in time (test points are shown at 
equidistant intervals along the x-axis). (D) Same as (C), showing performance for individual frames (r = −0.86, 
p = 0.018).



www.nature.com/scientificreports/

4Scientific Reports | 6:30175 | DOI: 10.1038/srep30175

Responses in individual trials were consistent (i.e., reproducible across repetitions of the same query), both 
within and between subjects. Subjects responded self-consistently in repeat trials of the same shot (Fig. S4A–D).  
Above chance levels of self-consistency would be expected merely from above chance overall performance (in 
the extreme case, a subject who was 100% correct would always be self-consistent). Yet, subjects were more 
self-consistent than expected under the null hypothesis of independence after considering the overall perfor-
mance (Fig. S4A–D, Methods).

There was also strong consistency between subjects (Figs 1C, S2, S3 and S4E–K). Examples of consistently 
correct and consistently incorrect answers in response to specific shots are shown in Fig. S3. Between-subject 
consistency was evident when comparing each subject to the mode response of all other subjects (Fig. S4E–H) 
and also when comparing subjects in a pairwise fashion (Fig. S4I–K). There was stronger between-subject con-
sistency than expected under the null hypothesis of independence after considering the overall performance of 
each subject (Fig. S4E–K).

Performance increased with the duration of each shot, reaching approximately 90% for shots lasting ~3 sec-
onds (Fig. 2B, p < 10−10, permutation test). Performance showed a significant decrease with the amount of time 
elapsed between encoding (movie watching) and the recognition memory test for both shots (Fig. 2C, p < 0.001) 
and individual frames (Fig. 2D, p = 0.018), consistent with a large body of previous studies on the retention func-
tion based on single items, narratives or autobiographical information (e.g. ref. 10). Remarkably, performance was 
above chance for single frames even when evaluated one year after encoding (75.1 ± 4.2%, p < 0.001).

To evaluate the degree of generalization in the results, we repeated the same experiment, in a different set of 22 
subjects, but showing Episode 2 of the same TV series during encoding and using foils from Episode 1 (Variant 1,  
Table 1, Methods). None of the conclusions were altered in this experiment variation (Table S1); the overall per-
formance was 82.5 ± 7.0% (cf. 85.6 ± 5.3% in the Main experiment).

In the Main experiment as well as in Variant 1, the same subjects were repeatedly tested in multiple ses-
sions spanning multiple days to months. Even though no feedback was provided on their performance, and even 
though the shots were different across test sessions, this led to repeated exposure to the events during the movie. 
We performed a separate experiment variation in a different set of 37 subjects that were only tested during a single 
session (Variant 2, Table 1). Performance in this experiment variation was lower, 79.2 ± 5.9%, (cf. 85.6 ± 5.3% 
in the Main experiment), suggesting that there was a small but significant effect of unsupervised performance 
improvement due to repeated exposure. Other than these quantitative differences, all the qualitative conclusions 
were similar in experiment Variant 2.

In the Main experiment as well as in Variants 1 and 2, the shots during the recognition memory tests were 
identical to those presented during the movie encoding. We conducted a separate experiment (Variant 3) to 
evaluate how visual, auditory and temporal characteristics of each shot influenced performance. In this exper-
iment variation, shots were modified during the recognition memory tests by removing sound (Fig. S5B) or 
color (Fig. S5D), flipping the frames horizontally (Fig. S5C), occluding 75% of each frame (Fig. S5E) or reversing 
the temporal order of the frames (Fig. S5F). Subjects were instructed to indicate whether the events in the shot 
had taken place during the movie, irrespective of these manipulations. Removing sound during the recogni-
tion memory test impaired performance, but visual information alone was sufficient to drive performance well 
above chance (Fig. 3A). Reversing the temporal order of the frames in a shot also led to decreased performance 
(Fig. 3B). Occluding 75% of the content of each frame led to a large decrease in performance both for shots 
(Fig. 3C) and individual frames (Fig. 3F). Yet, performance was slightly, but significantly, above chance even for 
occluded single frames (58 ± 5%, p < 10−4). In other words, even one quarter of a single frame provided sufficient 
cues to discriminate whether the corresponding event had been seen before or not. In contrast with removing 
sound, occlusion or reversing the temporal order of frames, two “low-level” manipulations did not affect perfor-
mance: neither flipping the frames horizontally (Fig. 3D,H) nor removing color information (Fig. 3E,G) led to 
changes in performance for either movie shots or single frames. In sum, the variables that led to an increase in 
the number of errors that subjects made when recognizing specific content from brief shots included distortion 
of temporal sequences, removal of audio-visual content cues, reduced shot duration and the amount of time 
between encoding and testing.

MAIN VARIANT 1 VARIANT 2 VARIANT 3

Number of subjects 41 (41) 24 (22) 39 (37) 57 (52)

Number of subjects tested at 1 year 18 0 4 20

Age range 18–48 18–48 18–39 20–28

Age mean ± SD 24.8 ± 7.0 28.5 ± 9.7 23.0 ± 4.7 23.9 ± 1.7

Percentage female 49 54 44 60

Encoding episode 1 2 1 1

Recognition memory tested in one 
session only No No Yes No

Stimulus transformations during 
recognition memory test No No No Yes

Table 1.  Summary of number of subjects and test conditions for each variation of the experiment. The main 
experiment and variants are described in the main text and in the Methods section. The number of subjects 
indicates the total number of participants and, in parenthesis, the number of participants that were included in 
the analyses (see exclusion criteria in the Methods section). Performance in each experiment variant is shown in 
Table S1.
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The consistency, accuracy and malleability of memory shown here are concordant with previous studies of 
single items and brief narratives. The current results extend previous work to the domain of spatiotemporal epi-
sodic sequences present in movies and establish long-term memorability of movie shots as a robust variable that 
must be explained from the events occurring during encoding. What determines whether a particular episodic 
event will be retained or forgotten? We sought to determine which aspects of the content of each shot correlated 
with successful performance. For this purpose, we used a semi-supervised procedure to annotate each shot in 
terms of low-level audio-visual properties (contrast, color content, sound volume, sound frequency spectrum), 
high-level audio-visual properties (specific objects, characters, actions and sounds) and other high-level cognitive 
properties (e.g. emotional content). The subjects that were involved in these annotations did not participate in 
any of the memory experiments. An example of these annotations showing the presence (and viewpoint) of each 
character across the entire first episode is shown in Fig. S6; Tables S2 and S3 list all the content properties that we 
consider here.

Several of the annotated content properties showed a significant correlation with performance (Fig. 4). For 
example, subjects demonstrated enhanced performance in shots containing “action” (90.2 ± 4.6% correct) versus 
shots without action (84.2 ± 5.9% correct) (Fig. 4A, permutation test p = 8 × 10−7). Shot content properties that 
correlated with performance included whether the characters were depicting emotions (Fig. 4F), whether the 
shot elicited emotions in the viewers (Fig. 4G), the shot duration (Fig. 4J, see also Fig. 2B), the presence of specific 
characters (Fig. 4N), their poses and movements (Fig. 4L,M), sounds (Fig. 4O), specific emotions (Fig. 4P,Q) and 
the presence of specific objects (Fig. 4R). By contrast, other variables such as the number of objects, number of 
characters or camera movement did not correlate with performance (Fig. 4, Tables S2 and S3).

Inspired by these correlations, we asked whether it was possible to build a simple quantitative model to explain 
recognition memory performance based exclusively on the content properties. First, we considered a multivariate 
linear regression model whereby the average performance was described as a linear combination of the content 
properties (Methods). On average, this multivariate linear regression model was able to account for the degree of 
memorability in shots (Fig. 5A) as well as in single frames (Fig. 5B) for both episodes (filled and empty circles in 
Fig. 5). This model accounted for 49% of the variance in the case of shots and 59% of the variance in the case of 
single frames. The separate contribution of each content variable to this model is shown in Fig. S7.

Figure 3.  Performance was insensitive to low-level stimulus manipulations and sensitive to disruption of 
the spatiotemporal events (Variant 4). (A) Performance was higher for shots including sounds (black) versus 
shots where sound was removed (gray). Here and in subsequent plots, the p value shows the results of a non-
parametric permutation test (Methods). (B) Reversing the temporal order of the frames in a shot (gray) led to 
decreased performance (here shots did not include sounds). (C) Occluding 75% of the frames in a shot (gray) 
led to decreased performance (here shots do not include sounds). (E) Horizontally flipping the frames in a 
shot (gray) did not change performance. (D) Removing color from the frames in a shot (gray) did not change 
performance. (F–H) Same as (C–E) but considering only single frames.
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Figure 4.  Shot content properties correlated with performance. (A–H, L–R) Performance for movie shots 
depending on whether the corresponding content was present or not in the shot (mean ± SEM across subjects). 
For example, subplot (A) indicates the percentage correct in shots where there was no action (“No”) compared to 
those shots where there was action (“Yes”). The content was manually annotated for each shot by an independent 
set of subjects who did not participate in the recognition memory study. The definition of each of the content 
variables is described in the Methods section (see also Tables S2 and S3). (I–K) Mean ± SEM values for the number 
of characters (I), number of frames (J) and number of objects (K) for shots with correct performance (Corr) versus 
incorrect performance (Inc). In all subplots, “**” denotes p < 0.01 (Bonferroni corrected permutation test).
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Building on this linear regression model, we next developed a machine-learning algorithm to predict whether 
subjects would be correct or incorrect for each shot or frame. This model is schematically illustrated in Figs 6 
and 7A (Methods). Essentially, the content annotations represent a high-dimensional description of each shot 
(illustrated in Fig. 7A with only 3 dimensions) and the goal of the algorithm is to find a suitable surface that 
will separate those shots or frames for which subjects responded correctly from those where they were wrong. 
We randomly separated all the shots into a training set and a test set to evaluate whether the algorithm trained 
on one set of shots could extrapolate to a different set (cross-validation). For each shot, we defined a vector x 
containing all the content properties (Fig. 4, Tables S2 and S3). Each shot was associated with a label y indicating 
whether subjects performed correctly or incorrectly (C or I, binary classification, either at the group or indi-
vidual level as described below). During the training phase, we used a support vector machine (SVM) classifier 
with a linear kernel to learn the map between the content properties x and the labels y (Fig. 6A). To evaluate the 
performance of this model, we considered different shots not used for training and used the classifier to predict 
whether subjects would perform correctly or not (Fig. 6B). The shots were randomly subsampled to ensure that 
chance performance was 50% (otherwise, given that subject performance was above chance levels, the classifier 
could achieve high accuracy by merely predicting that subjects were always correct). By comparing the classi-
fier predictions with the actual subject responses, we evaluated the classification accuracy, which ranges from 
50% (chance) to 100% (perfect predictions). The goal of the classifier was to predict subjects’ performance on a 
moment-by-moment basis. Hence, the classifier could be correct even when subjects were not and vice versa (e.g. 
in the example test trial number 2 in Fig. 6B, the subject was incorrect and the classifier correctly predicted this 
incorrect behavioral response).

First, we considered the group level performance by using the majority vote across subjects as a label for 
each shot or frame (similar results were obtained when we used the mean response across subjects instead of 
the majority vote) and training the SVM algorithm to predict performance from individual content properties 
or combinations of content properties (Methods). In accordance with the correlations for individual content 
properties described in Fig. 4, there was a wide variation in the classification accuracies from individual content 
properties (Fig. 7B). Some properties yielded above chance performance (e.g. presence or absence of the main 
characters in the movie) whereas other properties yielded chance performance (e.g. the number of objects in the 
shot). Interestingly, the model captured non-trivial properties that relate to the narrative; for example, the indi-
vidual property that yielded the highest classification accuracy was the presence or absence of the main character 
in the movie (Jack Bauer, first bar in Fig. 7B). It should be noted that the subsampling procedure ensures that the 
frequency of occurrence of each content property across the entire movie does not have discriminative power to 
predict the subjects’ behavior (e.g., the classification accuracy for the main character cannot be simply accounted 
for by the fact that this character appeared more often than others).

In addition to examining individual contents, the machine-learning algorithm enables us to combine all con-
tent properties to make predictions in single shots. When combining all content properties, the classifier perfor-
mance reached 76.5 ± 4.4% (Fig. 7B). The classifier was even more accurate in predicting subjects’ performance 
in single frames (83.2 ± 2.5%, Fig. 7D). While there was a positive correlation between the classification accuracy 
from individual content properties in shots and single frames (compare Fig. 7B versus 7D), some properties 
were more informative to predict subjects’ performance in shots and other properties were more informative 

Figure 5.  A multivariate linear regression model accounts for a significant fraction of the variance in 
performance. Multivariate cross-validated linear regression prediction of performance (y-axis) against actual 
performance (x-axis, the percentage of subjects that was correct) for shots (A) or single frames (B) for Target 
(filled circles) or Foils (empty circles). The dashed lines denote the best linear fits. The squared correlation 
coefficient (r2) is indicated in each subplot.
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to predict subjects’ performance in single frames. There was a positive correlation in the classification accuracy 
from each individual property in predicting subjects’ performance for Episode 1 versus Episode 2, but there were 
also notable differences where properties were more informative to correctly discriminate the target shots in 
one episode than to correctly rule out the foils in the other episode (Fig. S8). Similar results were obtained when 
considering data in the 3 experiment variants (Fig. 7C). Furthermore, the properties that contributed most to 
the classifier performance in one experiment also showed strong contributions in other experiments (Fig. S10).  

Figure 6.  Schematic illustration of the machine learning approach to predict memorability in single trials. 
The data were randomly divided into a training set with Ntrain trials (A) and a test set with Ntest trials (B). In 
each trial, a shot was presented and the subject responded correctly (C) or incorrectly (I). We extracted the 
set of n content properties x[1], …, x[n] for the shot including low-level visual/auditory properties, high-level 
properties, emotional properties (Methods; Tables S2 and S3). The same approach is followed for single frames. 
A support-vector machine with a linear kernel was trained to learn the map between the content properties 
x and the correct/incorrect labels y, resulting in a set of weights w[1], …, w[n]. During testing (B), we used a 
different set of shots that did not overlap with the ones in the training set and used the weights w to predict 
whether the subject was correct or not. By comparing the machine learning predictions with the actual subject 
responses, we determined whether the classifier was correct or not in each trial and computed the overall 
classification accuracy (where 50% is chance and 100% is perfect performance). This classification accuracy is 
shown in Figs 7 and S8–S10).
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The strongest such correlation was between the Main experiment and Variant 1 (Fig. S10A, r2 = 0.83), where both 
experiments were identical except that the foil shots in the Main experiment corresponded to the target shots in 
Variant 1.

The results presented in the previous paragraph describe how well the machine learning approach can predict 
the mode, i.e., the majority vote, across subjects for each shot or frame. Next, we asked whether the classifier could 
also correctly predict performance for each individual subject. Across individual subjects, the classifier achieved 
an accuracy of 72.1 ± 10.2% for shots and 63.1 ± 8.3% for single frames (Fig. S9A,B). In order to interpret these 
classification accuracy values for individual subjects, we considered two simple models that were purely based on 
behavioral data and not on content properties. In these models, we used subjects’ performance to make predic-
tions within or between subjects. In the first such model (majority-based predictions), we evaluated whether we 
could predict performance for a given subject from the majority vote of all other subjects on the same query shots 
(Fig. S9C,D, dotted lines; shots: 87.8 ± 5.9%, single frames: 77.7 ± 6.1%).

In the second such model (self-predictions), we evaluated whether we could predict performance in single 
shots by extrapolating from repeated queries in the same subject (Fig. S9, dash-dotted lines; shots: 85.6 ± 13.3%, 
single frames: 86.3 ± 7.15%). As expected, both of these models based on human behavior significantly outper-
formed the machine learning algorithms based on content. We reasoned that these models provide an upper 
bound for how well any computational algorithm could predict human behavior.

Discussion
Most input information impinging on our senses is forgotten. The computations involved in specifying which 
events are to be remembered involve selective and constructive filtering processes to extract meaning based on 
prior knowledge, goals, associations, and abstraction1,2,4. Here we demonstrate that a computational algorithm 
can be trained to capture a glimpse of these complex cognitive filtering operations using only visual, auditory 

Figure 7.  A machine learning classifier achieves high accuracy in predicting performance in single trials. 
(A) Example showing three content properties used to predict memorability in shots where the classifier was 
correct (filled circles) or incorrect (open circles) for trials where subjects’ performance was correct (blue) or 
incorrect (red). (B) Classifier performance using 23 individual content properties (bars) or combining all 
properties (“ALL”) for movie shots. Chance performance is 50%. Bars are alternately shown in dark and light 
gray for aesthetic reasons to better separate them and link them to their labels on top. Odd numbers are also 
included to link each bar to the appropriate label. (C) Classifier performance combining all properties for each 
experiment variant. (D) Same as (B) but using individual frames instead of shots.
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and emotional content. Even though this computational algorithm uses only a small fraction of the information 
present in the inputs, it yields semi-accurate predictions about what moment-by-moment episodic events subjects 
remember from a movie.

Movies offer the opportunity to examine memory formation for event sequences that are close to the basic 
elements of everyday episodic recollections. Subjects can form memories for specific movie events that are accu-
rate (Fig. 2A), sufficiently robust to be reproducible across repeated testing (Fig. S4) and yet consistently fallible 
(e.g. Figs 1C and S2–S4), thus following the basic properties of episodic memory formation demonstrated in 
other domains2,4,5,10. Robust performance was observed across a wide range of conditions including two different 
movie episodes (Episode 1 in the Main experiment and Episode 2 in Variant 1), when repeatedly testing the same 
subjects (Main experiments, Variant 1) or when evaluating the performance of each subject only once (Variant 2), 
for brief shot durations, even for single frames (Fig. 2B) and up to one year post-encoding (Fig. 2C,D).

The observation that recollections are consistent across subjects (Figs 1C and S3–S5) suggests that there are 
specific aspects of the content of each shot (as well as cultural conventions and similarities) that contribute to 
remembering and forgetting. The current study provides a quantitative and systematic documentation of how 
properties of the audio, visual and cognitive contents of brief movie shots contribute to memory formation 
(Figs 3,4 and S8). The prevalence of certain specific content features is consistent with previous work in the field. 
For example, a large body of work has linked emotions and memory formation (e.g. refs 16,30–34); indeed, in 
our data, the emotional valence of each shot and the emotions elicited in the viewer show a significant correlation 
with recognition memory performance.

Those content properties can be used in simple models to make single shot predictions of what subjects will 
or will not remember from specific events embedded within a movie narrative (Figs 5,7 and S9). The proposed 
model does not aim to capture the mechanisms by which neurons in the brain learn and store these memories 
but rather provides a quantitative description of how visual, auditory and cognitive variables dictate successful 
memory encoding. 

Recently, some investigators have elegantly used algorithms similar to the ones in the current study to deter-
mine what makes individual images memorable (e.g. refs 12 and 35). These studies combined high-throughput 
behavioral measurements obtained via the web to measure memorability over short temporal scales for isolated 
images devoid of spatial, temporal or narrative context. The degree of memorability across subjects in those 
studies could also be predicted from variables describing the contents of each picture. For example, if an image 
contained faces, it was more likely to be remembered. The work presented here significantly extends those obser-
vations in several ways. The content that we study here is dictated by meaningful events that take place during 
the movie; for example, it is not just any face that drives memorability in our data but specific persons that are 
relevant to the plot. Here we predict memorability on time scales of weeks to months, up to a year post-encoding, 
as opposed to the web-based testing of individual items on temporal scales of minutes. We also consider foils 
that are very similar to the test items in terms of basic properties. Additionally, here we make predictions about 
memory formation for episodic events that include spatiotemporal context and emotional valence embedded in 
a narrative as opposed to single items.

How accurate is the model proposed here? To provide an intuition and put the model’s performance in con-
text, we compared it against two models based purely behavioral performance. We reasoned that data from the 
same individual or the majority across a large number of individuals would constitute a better predictor of a given 
subject’s behavior than an algorithm that utilizes only a partial description of a shot. Indeed, these alternative 
models based on human behavior provide upper bounds for classification accuracy and significantly outperform 
the computational algorithm (Fig. S9). Yet, the machine learning classifier algorithm’s performance was clearly 
above chance and demonstrated significant explanatory power even for individual subjects. The success of this 
type of approach is quite remarkable, considering that: (i) only a single shot is used by the algorithm as opposed 
to subjects who can form associations across the entire narrative of the movie, (ii) a small fraction of the contents 
is used by the algorithm as opposed to humans who have access to a much richer set of data compared to the rudi-
mentary list of properties in Tables S2 and S3 and (iii) those contents are forced into a rather impoverished format 
amenable for machine learning classification (Tables S2 and S3). In spite of these limitations, the computational 
algorithm was only ~10% below the upper bounds provided by the alternative human-based predictions. The 
proof-of-principle results shown here leave ample room for improvement (e.g. via the incorporation of additional 
and more accurate content descriptors) while capturing non-trivial aspects of human memory formation.

Even though using movies provides a rich arena to quantitatively examine the formation of episodic mem-
ories22,36,37, commercial movies such as the ones used here constitute artificial stimuli where the movie director 
attempts to guide and manipulate the observers’ viewpoint, attention, feelings and even recollections. Hence, the 
extent to which the conclusions about the predictability of episodic memory formation from audio, visual and 
cognitive content can be extrapolated to real life episodic memories remains to be determined and will require 
further investigation. The initial steps presented here provide a methodological approach that opens the doors to 
build more complex quantitative models to capture the output of the selective filtering and subjective constructive 
process that forms the essence of episodic memories.

Materials and Methods
Subjects.  A total of 161 subjects participated in the main experiment and three variants (Table 1). More than 
90% of the subjects were college students or recent graduates. All tests were performed with the subjects’ consent 
and followed the protocols approved by the Institution Review Board.

Movie presentation and eye tracking.  Subjects watched a 42-minute movie (TV series “24”, Season 6, 
Episode 1) in the laboratory. None of the subjects had watched any episode from this TV series before. Subjects 
were instructed to “sit down, relax and enjoy the movie”. During recruitment, subjects were told: “You will be 
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asked questions about the movie in six evaluation sessions” (except in Variant 4, see below). There was no explicit 
mention about studying or testing memory but it can be surmised that subjects inferred that memory was 
involved by virtue of the fact that they were going to be asked questions about the movie.

A total of 9 subjects were excluded from analyses: 5 of them were authors in this study and were not consid-
ered further to eliminate any potential biases; one subject had a low number of trials (<400), two subjects showed 
significant biases in the responses (>75% “yes” answers), and one of them had low overall performance (<60% 
overall). None of the conclusions in the study would be altered if these 9 subjects were included in the analyses. 
All analyses in the text are based on 152 subjects (Table 1 shows the distribution of these subjects across the four 
experiments).

The movie was presented on a Sony Multiscan G520 21-inch cathode-ray tube monitor (Sony Corporation, 
Tokyo, Japan). The movie presentation was controlled by an Apple MacBook Pro computer (Apple Computer, 
Cupertino, California), using MATLAB software (MathWorks, Natick, Massachusetts) with the Psychophysics 
Toolbox and Eyelink Toolbox extensions38–40. The movie subtended approximately 7.5 × 12.5 degrees of visual 
angle and was presented in color at 30 frames/sec (multiple figures in the manuscript show examples of movie 
frames). The audio was delivered via headphones and subjects were allowed to adjust the volume at will. Eye 
movements were monitored throughout the movie using infrared corneal reflection and pupil location, with 
nine-point calibration (Eyelink D1000, SR Research, Mississauga, Ontario; there were no “recalibrations” during 
the movie presentation but accurate calibration was monitored at the end of the movie). Eye tracking data were 
synchronized to the movie presentation; example eye position data are shown in Fig. 1A. The eye movement data 
were not used in any of the prediction algorithms.

In those figures that include a frame from the commercial movies (Figs 1A,B,6,S1,S3 and S5), we have replaced 
the actual original images by artistic renderings.

Definition of movie shots and content annotation.  The sequence of frames during the movie was split 
into shots defined using a computational algorithm to detect sharp transitions (cuts) between two consecutive 
frames (e.g. Fig. S1A). The content of all the movie shots was described using a semi-supervised procedure that 
included computational annotations and manual annotation by 10 subjects. There was no overlap between the 
subjects performing these content annotations and those subjects who participated in the recognition memory 
experiment. The annotations included “low-level” audio and visual properties: contrast, color content, sound 
level, and sound frequency spectrum. The annotations also included a series of “high-level” properties described 
in Tables S2 and S3. These properties included whether the shot depicted emotional content, whether the shot 
elicited emotions in the viewer, whether the shot happened indoors or outdoors, presence or absence of each 
one of 29 different characters (Fig. S6), viewpoint for each character, presence or absence of 13 possible sounds, 
presence or absence of 20 possible emotions, and the presence or absence of 25 different objects. Although there 
was a small degree of variability in the content annotations (particularly for the more subjective aspects of the 
shot content such as which emotion a character conveyed in a given shot), overall, there was a significant degree 
of consistency. We used the mode (majority vote) across different annotators when the annotations disagreed. We 
only considered content properties that appeared in at least 10 shots for analyses. An example of these annota-
tions is shown in Fig. S6.

Foil shots.  Recognition memory evaluation sessions included shots from Episode 1 (the episode that subjects 
watched, referred to as “Target” throughout the manuscript) and Episode 2 of the same TV series and season (not 
watched by the subjects, referred to as “Foil” throughout the manuscript). Targets and foils are counterbalanced in 
Variant 1, described below. The selection of suitable foils is critical in memory experiments. For example, the task 
can be trivial if the foils are taken from a cartoon movie and the task can be made virtually impossible if only one 
pixel in the entire frame is changed. The task was specifically designed to include a natural comparison of targets 
and foils that would resemble the formation of episodic memories in realistic scenarios. The events in a given 
season of this TV series take place during a twenty-four hour period; this means that when comparing two con-
secutive episodes, each character is typically wearing the same clothes, the locations are similar, the filming style 
is the same, etc. To further ensure that targets and foils were similar, (i) we matched the average shot duration 
in target and foils, and (ii) we selected shots from Episode 1 that had a corresponding shot in Episode 2 that was 
matched as close as possible in terms of the content annotations for characters and their viewpoints. Examples of 
such matches across episodes are provided in Fig. S1B. For every target shot shown from Episode 1, there was a 
trial with a matching foil shot from Episode 2 containing the same characters and viewpoints.

Recognition memory evaluation.  In each trial, subjects were presented with either a target or a foil shot. 
Shots from either episode were shown in pseudo-random order and with equal probability (chance performance 
was 50%). Subjects performed an old/new task reporting whether they remembered having seen the events in the 
shot during the movie presentation or not (Fig. 1B). Responses were provided using a computer mouse.

There were four different experiments. Performance in each variant is shown in Table S1. Throughout the text, 
we focus on the Main experiment unless otherwise stated.

Main experiment.  Performance was evaluated in six sessions: Session 1, immediately after watching the movie 
(referred to as 0 days); Session 2, between 22 and 26 hours after watching the movie (referred to as 1 day); Session 
3, between day 6 and day 8 after watching the movie (referred to as 7 days); Session 4, between day 27 and day 
33 after watching the movie (referred to as 30 days); Session 5, between 85 and 95 days after watching the movie 
(referred to as 90 days); Session 6, between 335 and 395 days after watching the movie (referred to as 365 days). 
Subjects were offered a monetary incentive that grew with the number of sessions in which they participated. Still, 
not all subjects finished all 6 sessions (average 3.7 ± 1.1 sessions/subject). The dependence of performance with 
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the time between encoding and testing is described in Fig. 2C,D. Subjects were instructed not to watch any epi-
sode of this TV series during the entire testing period of 365 days. All subjects reported compliance with this rule.

In order to evaluate self-consistency (Figs 1C and S6), unbeknown to the subjects, a small fraction (3%) of the 
shots was repeated at random times during the test. These repeat trials were equally distributed between the main 
movie and the control. None of the conclusions would be altered if these trials were excluded from the analyses 
(except of course that we would not be able to report self-consistency). There was no systematic trend in perfor-
mance when comparing the first presentation of each shot and subsequent repetitions for this small set of 3% of 
repeated trials.

Variant 1.  In this experiment variant, the role of Episode 1 and Episode 2 were reversed. Subjects watched 
Episode 2 during the movie encoding session and foil shots were taken from Episode 1. All other procedures were 
identical to the Main experiment.

Variant 2.  In this experiment variant, recognition memory was only evaluated in one session for each subject. 
All other procedures were identical to the Main experiment.

Variant 3.  We refer to the presentation of unaltered shots as the default condition (Fig. S5A). In this experiment 
variant, a series of modifications of each shot were introduced during the recognition memory test sessions: (i) 
presentation of single frames (randomly chosen from within the test shots); (ii) removal of sound (Fig. S5B); (iii) 
horizontal flip of each frame from left to right (Fig. S5C); (iv) grayscale presentation (Fig. S5D); (v) occlusion, by 
presenting only one quadrant (randomly selected) and covering the other three quadrants with a black occluder 
(Fig. S5E); (v) temporal reversal of the frames within the shot (Fig. S5F). Subjects were instructed to indicate 
whether they remembered the events depicted in the shot regardless of such transformations. The order of pres-
entation of shots and these manipulations was pseudo-randomized. All other procedures were identical to the 
Main experiment.

Data analyses.  We computed the total number of “yes” and “no” responses for each subject. With the excep-
tion of one subject who was excluded from analyses (discussed above), the proportion of yes and no responses 
was close to 50% (50.5 ± 4.9%, mean ± SD across subjects).

Throughout the manuscript, we summarized performance for each experimental condition by reporting the 
percentage of trials in which subjects were correct (pc, “percentage correct”). The overall percentage of correct 
trials combines the probability of hits (phit, the probability of reporting a correct answer when the target was 
shown) and the probability of false alarms (pFA, the probability of reporting an incorrect answer when the foil was 
shown). Given that the number of target and foil trials was approximately the same, = + −pc p p( (1 ))hit FA

1
2

. It 
is also common to combine phit and pFA by reporting d′, ′ = −− −d z p z p( ) ( )hit FA

1 1 , where z−1(p) indicates the z 
score corresponding to the probability p41. There were no significant biases and the performance in target trials 
was comparable to the performance in foil trials (Fig. 2A, Table S1). We report phit, pFA and d’ in Table S1 and in 
supplementary web figures that match Figs 2 and 3 in the main text (http://klab.tch.harvard.edu/resources/
Tangetal_episodicmemory_2016.html). None of the conclusions in this study change if we use these alternative 
metrics and we opted to consistently keep one metric, the overall percentage correct, throughout the text rather 
than reporting multiple different values for each figure.

The first 5 trials in each experimental recognition memory session were removed from analyses to avoid any 
non-stationarities while subjects were adapting to the test. Because each subject participated in over a thousand 
trials (mean = 1629 trials per subject), removing these 5 trials did not affect the results. Throughout the manu-
script and unless otherwise stated, statistical analyses are based on a two-sided non-parametric permutation test 
with Bonferroni correction42. We only computed percentages for a given condition if we had a minimum of 20 
trials.

When evaluating the degree of consistency, within and across subjects, we compared results against the null 
hypothesis according to which performance was independent across trials. Let pi be the percentage correct for 
subject i. Under the independence assumption, we expect the fraction of repeat trials when subject i is consist-
ently correct to be pi

2, the fraction of repeat trials when subject i is consistently wrong to be (1−pi)2 and the frac-
tion of repeat trials when subject is inconsistent to be 2pi(1−pi) (where the factor 2 arises because of the two 
possible ways of being inconsistent; note that + − + − =p p p p(1 ) 2 (1 ) 1i i i i

2 2 ). Similarly, when considering 
two subjects i and j, under the null hypothesis, the fraction of repeat trials when both subjects are expected to be 
correct is pipj, the fraction of repeat trials when both subjects are expected to be wrong is (1−pi)(1−pj) and the 
fraction of repeat trials when the subjects are expected to be inconsistent is... The results of simulations to evaluate 
these expected values under the null hypothesis are shown in Fig. S4.

We evaluated whether the content of each shot (see “Definition of movie shots and content annotation” and 
Tables S2 and S3) correlated with behavioral performance. Let the vector xi denote the content of shot i. The 
dimensionality of this vector (dim(x)) depended on which content properties were used for the analyses (a sche-
matic rendering of the feature extraction process is shown in Fig. 6; an example using three properties is shown in 
Fig. 5A). Let syi indicate whether subject s was correct or not in shot i ∈y( {0, 1})is . We also considered the 
response mode (majority vote) across subjects, =y ymode( )i is . We examined the correlation between x and y for 
each individual content property (Fig. S7). We also considered a multivariate linear regression model defined by 

α= ∑ 


=

=
y x ji j

j dim
j i

x
1

( )  where the coefficients αj were fit to the data Fig. 5).
We quantitatively evaluated how well we could predict subjects’ recognition memory performance using the 

properties describing the content of each shot on individual trials (Figs 6,7, S8 and S9). A schematic description 
of the machine learning approach is shown in Fig. 6. We used a machine learning approach to learn the map 

http://klab.tch.harvard.edu/resources/Tangetal_episodicmemory_2016.html
http://klab.tch.harvard.edu/resources/Tangetal_episodicmemory_2016.html
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between xi and the recognition memory performance of each subject, syi
43,44. We also considered the response 

mode across subjects yi and evaluated whether we could predict this majority vote (binary yes/no decision) for 
each shot. We used a Support Vector Machine (SVM) classifier with a linear kernel: the algorithm’s boundary can 
be described by w.xi where w are weights that are adjusted during training. We used a ten-fold cross-validation 
approach to avoid overfitting. To ensure that chance performance was 50% for the algorithm, we randomly sub-
sampled the data such that #{yi = 1}=#{yi = 0}. Several other algorithms were also evaluated: Fisher linear discri-
minant classifier, a nearest neighbor classifier, a naïve Bayesian classifier. While the exact performance value 
showed a small dependence on the machine-learning algorithm used, none of the conclusions depended on the 
algorithm choice. In the interest of simplicity, we report results for only one algorithm (SVM, which is known to 
show robust generalization performance). To evaluate the expected performance under the null hypothesis that 
there is no correlation between the movie content and recognition memory performance, we randomly shuffled 
the shots and recomputed the classification performance (10,000 iterations).

Ethical approval and informed consent.  All experimental protocols were approved by the Institutional 
Review Board at Children’s Hospital. All the methods were carried out in accordance with the approved guide-
lines. Informed consent was obtained from all subjects.
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