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Published: 28 July 2016 Because of inevitable coupling with the environment, nearly all practical quantum systems are open

system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum
algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary
evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a
linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the
open quantum system is realized by using Kraus operators which is naturally implemented in duality
quantum computer. This duality quantum algorithm has two distinct advantages compared to existing
quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the
algorithm is O(d®) in contrast to O(d*) in existing unitary simulation algorithm, where d is the dimension
of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators,
this duality quantum algorithm provides an exponential improvement in precision compared with
previous unitary simulation algorithm.

Quantum computer works quantum mechanically'?, and can efficiently factorize large numbers® and search in an
unsorted database*®. Simulation of quantum systems is one of the most important original motivations of coming
up with the idea of quantum computers’, and the progress of quantum simulation study is developing fast®~'¢. The
dynamic evolutions of a closed system are described by unitary transform, which can be simulated in quantum
computer directly. However, in the real world, quantum systems interact with their surrounding environment
inevitably, hence most systems are open systems. The dynamic evolution of an open quantum system is usually
non-unitary because of decoherence and dissipation. It is natural to describe the dynamics of an open quantum
system by including the interaction between the principal system and an environment®. The principal system and
the environment coupled together form a closed quantum system, which is denoted as total system. Assume that
the Hilbert space of principal system is { , with dimensions d, and the Hilbert space of environment is 7, with
dimensions d,, then the Hilbert space for the total quantum system consisting of principal system and environ-
mentis H, ® H ./ We assume that the system-environment state is the product state in the beginning, and the

joint density matrix is described as p ® p,,,. Considering the dynamics of the principal system is what we inter-
ested, the evolution of the density matrix after performing a partial trace over environment is®

p=tr,, (Ulp®p, U, 6))

env

where p’ is the density matrix of the final state of principal system and U is time evolution operator imposed on
the total system. The corresponding Hamiltonian H of U is in the space H , ® H,. For convenience, we assume
that the dimensions of principal system and environment are the same, namely, d = d, = d,. The dimension of
total Hamiltonian H is d* Lloyd firstly proposed a quantum algorithm to simulate open quantum system effi-
ciently’. In this algorithm, by enlarging the system to include the environment, the total system Hamiltonian is
decomposed in the form H = E§:1 H, where each H, € C**¢’ is Hermitian and satisfies IH;|l < h for a given
constant k. The query complexity of simulating time evolution of the open quantum system in an accuracy € over
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Figure 1. An illustrator for a three-slits duality quantum computer.

time ¢ is approximated to O(ld*ht?/<). By regarding the total system as a bigger closed quantum system, this algo-
rithm performs unitary transformation as same as in the closed system.

The concept of duality quantum computers is first proposed by Long in 2002 based on the general principle
of quantum interference!”'8, which draw many attentions'®-*. It is shown that any bounded linear operator can
be expressed as a linear combinations of unitary operators in a duality quantum computer?!. Thus, duality quan-
tum computers can perform non-unitary transformation and provide novel way to design quantum algorithms,
which can adapt the techniques in classical algorithm design to quantum algorithms, already showing flexibility
and good performance in precision for closed quantum systems. Recently, several duality quantum algorithms
have been proposed, which simulate Hamiltonian dynamics by linear combinations of unitary operations in a
closed quantum system*®~*. In the algorithms in refs 47-49, the performance has exponential improvement in
the dependence on precision.

Alternatively, in an open quantum system coupled with surrounding environment, the dynamics can also be
described by a completely positive linear map £(p). The quantum operations can be represented in operator-sum
representation by Kraus operators. Suppose the initial state of environment is a pure state, denoted as p,,,, = |e,) (&,|-
Equation (1) can be rewritten as®

e(p) = Y- (e Utp @ [eg) (eo} UTles)
- )

:ZEkPEkT >
k (3)

where E; = (e Ule,) is an Kraus operator and satisfies completeness relation ) E,:r E, = I. The complete set of
E(E, is known as a “Positive Operator-Valued Measure”. It should be noted that the operator Ej is only acted on
the principle system. So, if we can realize the Kraus operator, the complexity of evolution simulation that is
dependent on dimensions will be decreased. Generally speaking, Kraus operator E; is non-unitary and can not be
realized in quantum computer directly. However, the Kraus operator can be realized in a duality quantum com-
puter***!. In our method, the query complexity is O(d’||H||__ tlog(r/€)/ loglog(r/€)), which exponentially
improved the performance of quantum algorithm in ref. 7.

In this paper, we present a duality quantum algorithm to simulate Hamiltonian evolution for an open quan-
tum system. There are two stages in our method. The first stage realizes Kraus operators in the duality quantum
computer. The second stage of the algorithm is based upon a truncated Taylor series to approximate the evolution
operators. The query complexity of the algorithm is significant decreased compared with Lloyd’s algorithm?’. We
demonstrate this algorithm by a single quibit open quantum system as an example.

max

Results

Realization of Kraus operators in duality quantum computer. A duality quantum computer is a
moving quantum computer passing through a d-slit which exploits the wave-particle duality of quantum sys-
tems'”. The physic picture is : a quantum system passing through a d-slits with its wave function being divided
into d sub-waves, the dividing operation denoted as the quantum wave divider (QWD) operation. Different
unitary operations are performed simultaneously on the sub-waves at different slits. This is called the duality
parallelism, and it enables the duality quantum computer to perform non-unitary gate operations. Conversely,
the quantum wave combiner (QWC) operation adds up all the sub-waves into one wave function. Compared to
ordinary quantum computers in which only unitary operators are allowed, One can perform different gate oper-
ations on the sub-wave functions at different slits in the duality quantum computer!’. Generally, we only measure
the final wave functions on 0-slit to realize a duality quantum gate, which is called single output duality quan-
tum computing. Furthermore, we make measurements of the final wave functions on all d-slits, which is called
complete measurements. After detecting, through QWD operation and QWC operation, every path on each-slit
realized a duality quantum gate. It means that d duality quantum gates are performed in one process. The process
is denoted as multi-output duality quantum computing. Duality quantum gates are generally non-unitary and
naturally suitable to perform non-unitary evolutions. A three-slits duality quantum computer is shown in Fig. 1.
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Figure 2. The multi-output duality quantum computing circuit in a quantum computer. |[¥) denotes the
initial state of work qubit, and |0) is the initial state of the controlling auxiliary qudit. The circles represent the
state of the controlling qudit and the squares represent unitary operations. Unitary operations U, U, ., U;_,
are activated only when the qudit holds the respective values indicated in circles'®. The “readout” part marked
by yellow rectangle means that: When the auxiliary qudit in the |j) state, where j€ {0, 1..., d}, the corresponding
output (final state) of the work qubit will be redout by corresponding detector.

The input is from the 0-th slit, and it is divided into three sub-waves by the middle screen with three slits. After
the middle screen, different operations are performed on the different sub-waves, and three outputs of duality
quantum computing are collected from three-slits on the right wall's.

It has been proven that a moving n-qubit duality computer passing through a d-slit can be perfectly simulated
by an ordinary quantum computer with n-qubit and an extra qudit resource!®2, which is called duality quantum
computing mode. For the convenience, we use the expressions from duality quantum computing mode!23233
in this article.

The n-qubit ordinary quantum computer is represented by n work qubit and an auxiliary qudit represents a
d-slits. The QWD operation can be represented by a general unitary operation V and the QWC operation can be
represented by a general unitary operation W. The two unitary operations act on an auxiliary qudit. There are d
controlled unitary operations act on ordinary quantum computer between the operations V' and W. The quantum
circuit of duality quantum computer is given in Fig. 2.

It is convenient to divide the whole process into four steps to illustrate the multi-output duality computing in
a quantum computer.

Step one. 'The quantum system is prepared with initial state |¥)|0) firstly. The QWD operation is implemented
by performing the operator V on the auxiliary qudit |0), and this operation transforms the initial state into

0)[0) — [¥)V]0)

— [W)Vio) = 2\ i| Vo)
d-1
= [®)2 ] (i[v]0)
i=0
d—1
> Vil W)
e 4)
where V;=p, is a complex number and satisfies the condition Z \V,O\ = 1, | V| < 1. V;, represents the

divider structure and is the first column element of the unitary matrix V representing the coefficient in each slit.
The closure condition 3 |i){i| =I in quantum mechanics has been used in the deviation. The final state |U}|i)
represents the sub-wave at the i-th slit.

Step two.  Performing the auxiliary qudit controlled operations Uy, U, .-, U,_, on the work qubits with initial
state |¥') which leads to the following transformation,

d-1

SV U9 ).

- (5)
The corresponding physical picture is that unitary operations are implemented simultaneously on the sub-waves
at different slits.

Step three. Performing the unitary operation W on the auxiliary qudit |i). Then the following state is obtained,
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SV, %) W)

2_VioUi| %) IW]i)
i
d—1

= VUil %) 3 [k) (k| W1i)

k=0

WV i) )
SL) )

(6)

where L, =3, W,;V,,U; is the duality quantum gate. In previous paper'”!%, only L, is studied as a duality quantum
gate. In this article, we discuss all the k number duality quantum gates.

Step four.  After step three, the auxiliary qudit is in a superposition state. Making the complete measurements,
namely, measuring the final wave function when the qudit is in state |j) by placing j detectors at j different slits.
which described as “readout” in Fig. 2. The complete measurements are also clearly visualized by the detectors
in Fig. 1.

The duality quantum gate, or generalized quantum gate is defined as follows

d-1
L= ¢U,
= 7
where Uj is unitary and ; is the complex coefficient and satisfies
d-1
el <1
=0 ®)

When ¢; is restricted to positive real, ¢; is denoted by r;, and satisfies the constrained condition of >, < 1. In this
scenario, the duality quantum gate is called real duality gate which is denoted as L,. So, the form of real duality
quantum gate can be expressed as

d-1
L =Y rU,.
i=0 ©)

This corresponds to a physical picture of an asymmetric d-slit, and 7, is the probability that the duality com-
puter system passes through the i-th slit.

Because unitary operators have the unclosed property under addition, the duality quantum gates are generally
non-unitary. Moreover, Gudder has proved that all linear bounded operators in a finite dimensional Hilbert space
can be expressed as an element in the positive cone of generalized quantum gates*'. Many recent studies about the
mathematical theory of duality quantum computer have been made'?-3134,

Theorem. The duality quantum gate L, = >_,W,;V,,U; is a trace preserving Kraus operator, namely, > L,/ L, = I.

Proof. Defining L, = >, W};V,,U, firstly, then we have, L, = >, W}, Vi U;". Then a straightforward derivation
gives

Sil1, = S[Ewv S WL
k i 7

k

S, wki,[zv,-z U:zv,-fou,-/]
k i i’

[61‘1"2‘/1‘1(‘) (JiT Vi’O Ui’]

ii’

[Zvio U;r Vio Ui]
i

= Z‘Vi0|2 UiJrUi
= I (10)

The conditions that matrices W, V and operator U, are unitary are used in the proof. So, the duality quantum gate
Ly can be applied to realize Kraus operator E,. Actually, E; is a bounded linear operator in a finite dimensional
Hilbert space which can be decomposed into a sum of unitary operators. By extending the Hilbert space, any
Kraus operator E; can be realized by duality quantum gate L,. The effect of environment on the principal system
can be explained as the combination effects of different operators performed on the system. In the expression of
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Figure 3. Quantum circuit for the BCCKS algorithm in single output duality quantum computing. In Part
A of Fig. 3, |U) is the initial state of work qubit and there are K numbers of |0} auxiliary controlling qubits and
Knumbers of L level |0); auxiliary controlling qudits in the auxiliary system. K numbers of |0) auxiliary
controlling qubits control the Knumbers of L level |0); auxiliary controlling qudits and the unitary operations
U, are activated only when the L level |0); auxiliary controlling qudits hold the respective values indicated in
circles. Part B of Fig. 3 is to illustrate that each unitary operation U, is composed of H,, H,, ..., H;_, H;. We
only “readout” the result with the auxiliary system in state [0)*|0);.

completely positive linear map form, we can get the dynamic evolution result of the open system directly without
coupled with environment.

Simulating the time evolution of open quantum system. We have realized the Kraus operator E; in
the previous section. To perform the whole duality quantum algorithm, we only need to realize the unitary opera-
tor U, in the Kraus operator in next step. U; in Eq. 6 is regarded as a time evolution operator and it is approximated
by a truncated Taylor series. It can be realized in a duality quantum computer just as in the BCCKS algorithm*>.

In the algorithm, consider a quantum system with Hamiltonian H = "%, a,H, where each H  is unitary.
Dividing the finite length evolution time ¢ into # segments, with each segment of length t/n. The time evolution
operator of each segment is approximated as

U, := exp(—iHt/n)
& (—iHtr)
~ Z—k'

k=0 :

K L .
Y G oy H, o H,,
k! ol kb Ck
k=00,....0,=1 : (11)

where K is the order of Taylor series.

Without loss of generality, let each c,>0. The approximation U is a linear combinations of unitary operations
because of the assumption that H , is unitary. It leads to the approximated expression of U, has a quantum duality
gate form. The truncated Taylor series index is denoted as*®

Joi=k by s 0): k<K, by ooy O €11, ..., L. (12)

Then, the expression of U can be simplified as

U= Zsrj U},
jel (13)
k k Ak
wheres = 3¢, [(t/r)"/k!] Qo T, ey = LEM) TR ay --ay /s and U o 1= (=i Hy--Hy.

According to Eq. (10), L = U/s is a quantum duality gate and s is the normalization constant.

We give the quantum circuit for realizing the approximation U is given in Fig. 3, which is the same as that in
ref. 35. The part A of Fig. 3 is the implementation of U, = exp(—iHt/r) ~ YK (—iHt/ r)¥/k!. The controlled
unitary operation U, which illustrated in part B corresponds to the linear combination form of the Hamiltonians,
H =Yt  «,H, The quantum circuit realizes the evolution in a segment,

|0)[0) — [¥)U,|0). (14)
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The implementation of operation U needs an auxiliary system and a work system(target state). The auxiliary
system is composed by K auxiliary qubits |0)X and K numbers of L level auxiliary qudits |0);, for the implementa-
tions of two QWD operations and two QWC operations. We denote the initial state of the whole system as
|W)|0)¥|0)F, where [W) is the work qubit state and|0)} means K numbers of L level auxiliary qudits all in state |0),%.

The first QWD can be expressed as a 2K x 2K matrix, denoted as V. Defining N = Zle «ay, the elements of the

matrix is
F
vE — Vio
i,0 F >
ilviol (15)
where
k
JF (Nt/r)” =2k 2Kk kefo,1,.., K}
0 — k!
0, other case. (16)

Similarly, we denote the second QWD operation as V5, which can be viewed as a L x L matrix. The elements of
the matrix satisfy
a
Vip= |=*,
“ONN 17)
Corresponding to K auxiliary qubits |0)X, K numbers of L level |0}, auxiliary controlling qudits should be
transformed into K numbers of state >°f_, _ /a7, |¢) by the same QWD operation V. They can be denoted as

L K
= mn)
(=1 (18)
Applying the two QWD operations VFand V* to the state [0)*|0)X produces the state of total auxiliary system
(Nt/ r
0)*[0) Z [EJ_E ] [07F),
= (19)

where s=> ;3 is the normalization constant. We perform the auxiliary system controlled operation U; on the
work system. The state of the whole system is transformed into

Ul

(Nt/r
L3 [m-

(20)

Then, we need to perform two QWC operations to combine the wave functions, denoted as WF= (V¥)" and
WS =(V5)!, respectively. Physically, the two QWC operations are the counterparts of the two QWD operations.
We denote the state orthogonal to |¥) |0)¥|0)X as |®), the total process can be described as:

I
W3V 0 WVE e U o))y = 1 - 5 2)

k
oy | Uj|2)[0) o)y 1,

L s,

S k=0 (=1

1)

where(W*V®) means K numbers of W*V® operations and U corresponds to some (—i)*H ¢ ~-Hy andj€].

The results of the duality quantum computing are in the terms with the auxiliary system in state | O)Kk |0)F. Therefore,
we only need to readout the output of the work system with auxiliary system in state|0)* |0)}, which corresponds to the
single-output duality quantum computing. Namely, the initial state goes through the transformation we interested is

k
U; ) j0)* o)z,

w0 - L5 [2 o

(=1

(22)
Thus, we obtain

k
Uj/s.

K L
SorU; = kzj(t/r)k/k![za,Z
=0

j€J

(23)

Consequently, we have successfully realized the following process,
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1~
)/0)*[0)f — 20/9)[0) o} o8

If we make measurement directly, the probability of detecting the auxiliary state [0)|0); is P,, where
P = U\\I/) | /s% Namely the probability of implementing U on the target state |¥) successfully is P,. Amplifying
the amphtude of the desired term before the measurement by applying the robust obvious amplitude- ampllﬁcatlon
given in Res.* enables us to nearly deterministically implement U. The accuracy of approximation of U can be quan-
tified by approximation error €. Consider the case that all a, equal to m corresponding Hamiltonian is approximately
decomposed into equal-sized parts. To ensure the total error of simulating time evolution under ¢, m should be in
the order O(e/t). The terms of Hamiltonian decomposition are L = O (d*||H l|,.. t/€)- The number of segments is
in the order r = O(d*||H| Il £ According to the Chernoff bound”, the query complexity in each segment is

K—O[ log(r/e) ]

loglog(r/e) ) (25)

The query complexity for the full simulation algorithm is r times K. Consider all the operations performed
on auxiliary system and work system, the total number of gates in the simulation for time ¢/r in each segment is*®

L(n+ logL)log(T/e)]

log log(T/¢) (26)

where T=(a; +---+ o)t.

In last section, we have realized Kraus operator by the duality quantum gate E, =L, =", W,;VoU.. In this sec-
tion, unitary operator U, is realised by BCCKS algorithm in duality quantum computing form with precision €.
So, we have successfully simulated the total evolution of an open quantum system,

= U ol
e(p) Xk:(ekl {p @ |eg) (eol} U'lex) @)

=) _EpE.
k (28)
The complexity of performing U; with precision € is Kr. Consider the fact that the coefficients satisfy
2| WiiVi| <1, the complexity of performing Ey is as the same as the complexity of performing U,. The total com-
plexity of the whole algorithm with d numbers of Ej is

log(r/e)

dKr = O|d’|H|| , t—>——
log log(r/e) (29)

Compared with the complexity of Llyod ‘s algorithm O(ld*ht*/e), the dependence on dimension of principal
system is decreased from O(d*) to O(d”) and the performance is exponential improved on precision €. An example
to show the implementation of this simulation algorithm is given in next section.

Application to a single quibit open quantum system.  Suppose we have a principal system with single
qubit, interacting with a single qubit environment. U is time evolution operator imposed on the total system®. The
expression of Uis

U=P,®I+P®X (30)

where X represents the usual Pauli matrix acting on the environment, and Py=]0)(0|, P, =|1)(1]| are projec-
tors acting on system. The initial state of environment is |0). In this special case, the number of state k is 2.
Equation (1) is simplified to

e(p) = Y (elUlp @ [0) (0]} U'ley)
k

EEkalj

k

= EopEq + EpE| (31)

where E, = P,, E, = P,, and satisfies completeness relation " E; E, = I. E,and E, can be realised by duality quan-
tum gate Ly=>_;W;V;,,U;and L, =>_;W,;V, U, respectively. Assume that

1 1
E, = Ly=—Z+ ~I
0 073 >
1 1
E, = Li=——-Z2+ -1,
1 1 2 2 (32)
where Z is the usual Pauli matrix and Uy=Z, U, =1. So, the QWD operator V and the QWC operator W are chosen as

SCIENTIFIC REPORTS | 6:30727 | DOI: 10.1038/srep30727 7



www.nature.com/scientificreports/
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readout
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Figure 4. Quantum circuit of realisation of Kraus operator in duality quantum computing when d=2.
| ) denotes the initial state of principal system, and environment is in the |0) state. The squares represent
unitary operations and the circles represent the state of the controlling qubit. Unitary operations Uy, U, are
activated only when the auxiliary qubit is |0) and |1) respectively.

11— 1) \F (1 1)
V= |- , W= |— .
\2 (1 1 2\-11 (33)
Measuring the final wave functions when the qudit is in state |0) and |1) by placing two detectors as shown by
“readout” in Fig. 4. We have realized the trace preserving Kraus operator E,. Then, regarding U; as a time evolu-
tion operator, it can be realized by BCCKS algorithm in a duality quantum computer. Ignoring the global phase

factor, U, can be regarded ase ™’ G, Similarly, U, can be expressed ase ™’ ¢, Regarding the evolution time as t=1,
the corresponding Hamiltonian of Uy and U, are H’ and H'. They can be expressed as

0

(=)

T s
HO = 2 ﬂ,le 2
0 0

2

Y]

(34)

After obtaining the expression of U, and U, and finding the corresponding Hamiltonian, we are able to simu-
late the Hamiltonian by approximating the truncated Taylor series of the evolution operator in duality quantum
computer. The process of realizing U, or U, has given in the last section.

Discussion

In the present paper, we have briefly described the dynamics of an open quantum system and the quantum oper-
ations can be elegantly represented in operator-sum representation. The dynamics in the principal system can be
described by trace preserving Kraus operators. The duality quantum computing is a suitable way to realise Kraus
operators with non-unitary feature. Duality quantum computer provides the capability to perform linear com-
binations of unitary operations in the computation, which is called the duality quantum gates or the generalized
quantum gates. The duality quantum computer can be perfectly simulated by an ordinary quantum computer with
n-qubit and an additional qudit resource. By realizing Kraus operators through duality quantum computing, and
approximating Hamiltonian simulation by the truncated Taylor series of the evolution operator in duality quan-
tum computer, we present an efficient quantum algorithm for simulating Hamiltonian in open quantum system.
Consider the fact that all quantum system is inevitable coupled with its environment in the real world, our method
can be applied in a class of general physical systems. By realizing Kraus operators, the query complexity is decrease
from O(d*) dimension dependence to O(d®) of the open quantum system. Moreover, through the use of truncated
Taylor series in duality computing, our algorithm can provide an exponential improvement in precision.
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