Table 4 The performance for the KIT E-mail Dataset.
From: A multi-similarity spectral clustering method for community detection in dynamic networks
T = 48 | T = 24 | T = 16 | T = 12 | T = 8 | ||
---|---|---|---|---|---|---|
PCQ-NA | NMI SSE | 0.7567 ± 0.0365 369.70 ± 58.83 | 0.7850 ± 0.0398 1259.69 ± 265.12 | 0.7760 ± 0.0396 1915.06 ± 463.29 | 0.7479 ± 0.0360 2766.32 ± 581.48 | 0.7362 ± 0.0416 3892.13 ± 1007.15 |
PCQ-NC | NMI SSE | 0.8120 ± 0.0401 253.33 ± 60.63 | 0.8105 ± 0.0284 924.83 ± 156.76 | 0.7933 ± 0.0287 1371.71 ± 202.50 | 0.7807 ± 0.0292 1862.48 ± 215.96 | 0.7736 ± 0.0215 2476.00 ± 224.26 |
PCM-NA | NMI SSE | 0.7466 ± 0.0433 382.39 ± 69.97 | 0.7773 ± 0.0386 1290.58 ± 258.89 | 0.7680 ± 0.0434 1949.60 ± 462.78 | 0.7378 ± 0.0398 2856.55 ± 628.81 | 0.7326 ± 0.0400 3954.75 ± 1018.30 |
PCM-NC | NMI SSE | 0.8290 ± 0.0345 232.27 ± 58.91 | 0.8150 ± 0.0214 924.99 ± 109.74 | 0.8076 ± 0.0248 1296.94 ± 174.63 | 0.7796 ± 0.0317 1884.85 ± 230.36 | 0.7680 ± 0.0203 2686.10 ± 152.40 |
StaticSpectral | NMI SSE | 0.8018 ± 0.0398 265.45 ± 56.69 | 0.8059 ± 0.0249 933.73 ± 135.10 | 0.7871 ± 0.0284 1418.89 ± 226.12 | 0.7795 ± 0.0287 1848.40 ± 201.88 | 0.7674 ± 0.0212 2518.20 ± 224.53 |
MSSC | NMI SSE | 0.8333 ± 0.0214 241.52 ± 28.73 | 0.8448 ± 0.0206 846.61 ± 77.28 | 0.8271 ± 0.0273 1297.94 ± 177.73 | 0.8086 ± 0.0270 1676.28 ± 226.60 | 0.8021 ± 0.0196 2328.38 ± 177.97 |