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. Anovel quantum private database query protocol is proposed, based on passive round-robin differential

. phase-shift quantum key distribution. Compared with previous quantum private database query
protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and
only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii)
it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer
and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The
present protocol is also proved to be secure in terms of the user security and database security.

© According to the credibility of participants, quantum cryptographic applications are mainly divided into two
categories: quantum cryptographic protocols with trusted parties and the ones with distrusted parties. In the first
category, participants are trusted and the threats are mainly from outside attackers. The most famous example is
the quantum key distribution (QKD) protocol where a secure identical key is shared by two remote parties so that
an adversary, Eve, cannot obtain any information about the key (up to a small failure probability). In contrast,
in the second category, the main security threats come from the inside participants who maybe are dishonest.

. The main applications include quantum secret sharing (QSS), quantum Byzantium agreement (QBA), quantum

: private comparison (QPC), quantum oblivious transfer (QOT), quantum private database query (QPDQ), etc.

: This letter focuses on the second category, in particular, the QPDQ protocol. In QPDQ protocols, the user

. Alice wants to obtain an item in Bob’s database without leaking which item she wants (user security), and Bob

. does not want Alice to get any information about other items (database security). The problem has been formal-
ized as symmetrically private information retrieval (SPIR)' by Gerther et al. Because unconditionally secure SPIR

© is impossible?, cheat-sensitive SPIR protocols are desirable. The term “cheat-sensitive” means that dishonest Bob

. will run the risk of being discovered if he tries to obtain the address queried by Alice.

As the quantum counterpart of the SPIR problem, QPDQ* has attracted lots of attention. Giovannetti et al.

© presented the first QPDQ protocol (GLM protocol)*. Subsequently, Olejnik presented an improvement of GLM

: protocol’. In the above QPDQ protocols*”’, the database is modeled by an oracle operation. However, its practical
implementation is limited by the high dimension of the oracle operation. To solve this problem, Jakobi et al.?
suggested the first practical QPDQ protocol (J-protocol) based on the SARG04 QKD protocol’. Since then, the

© QKD-based QPDQ model has attracted a great deal of attention and many theoretical and experimental attempts

- have been made at devising QKD-based QPDQ protocols'®2%.

: Existing QKD-based QPDQ protocols generally involve three stages: (i) quantum oblivious key distribution
(QOKD), (ii) classical post-processing (CPP) of the generated oblivious key, and (iii) classical private query
(CPQ). The goal of QOKD is to help the user Alice and the database holder Bob to share a raw key in such a way

. that it is known wholly to Bob and a fraction to Alice. The CPP of the generated oblivious key is aimed to reduce

. Alice’s known bits in the final key to roughly one bit thereby ensuring the database security. The CPP algorithm of

© the oblivious key is of vital importance to the efficiency and security of QPDQ protocols. Some CPP algorithms

* have been proposed®?>?%. For example, J-protocol gave a kN — N method, that is, it transforms a raw key with
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length kN into an N-bit final key, which requires a communication complexity of O(NlogN) (here N is the total
number of items in the database)®. To further reduce this communication complexity, Rao et al. presented two
improved methods of J-protocol, i.e., N— N and rM — N ones so that the communication complexity is reduced
to O(N)*. Here, r and M are integers and satisfy the constraint: rM < N. Unfortunately, the reduction in com-
munication complexity comes at the cost that the parity information about the final key bits is elicited by Alice?.
To solve the linear correlation among the adjacent final bits, Yang et al.?® proposed a nonlinear CPP scheme for
QKD-based QPDQs.

It is shown that both the QOKD and CPP algorithms determine the efficiency and security of QPDQ pro-
tocols. Inspired by a recently proposed round-robin differential phase-shift (RRDPS) QKD protocol® utilizing
single-photon signal of multiple optical pulses, Liu et al.?? proposed a novel QPDQ protocol. Different from
previous QKD-based QPDQ protocols, in their protocol, the number of the items an honest user will obtain is
always one and the failure probability is always zero. Therefore, no CPP process is required and the efficiency and
security of the QPDQ protocol® can be improved.

However, the original RRDPS QKD protocol®® requires to change the length difference of the two arms in a
Mach-Zehnder interferometer (MZI). Actually it is difficult to change the length difference of the two arms in a
MZI with high speed using the current technology. To solve this problem, Guan et al.* proposed an alternative
scheme, i.e., the passive round-robin differential phase-shift (PRRDPS) QKD scheme which does not require to
change the length difference of the two arms in a MZI and just chooses two pulses passively to interfere with so
that it is much simpler and more practical. Inspired by the PRRDPS QKD scheme?, in this paper, we propose
anovel QPDQ protocol. The proposed protocol is more practical than the work by Liu et al.?* and actually is its
extension.

Results

The PRRDPS QKD protocol. Lets first review the original RRDPS QKD protocol proposed by Sasaki ef al.?¢.
In the original RRDPS QKD protocol®, the sender Alice selects s; € {0, 1} to denote a random phase from {0, 7}
and encodes it on the ith one of L pulses. For each incoming L-pulse block, the receiver Bob implements a
single-photon interference with a MZI (see Fig. 2 of ref. 28). Concretely, Bob first splits each pulse by a half
beam-splitter and then randomly adjusts the length difference between the two arms of the MZI, ranging from 1
to L — 1 pulse periods. Then the pulses in the two light paths pass the second beam-splitter. After getting a detec-
tion click, Bob identifies which two pulses interfere and then announces the corresponding pulse indices i, j to
Alice. Alice and Bob can take the relative phase between these two pulses as the raw key, i.e., sy =sz=s;®'s;, where
5;€{0, 1} denotes the phase of Alice’s ith pulse.

In the original RRDPS QKD protocol?, Bob has to adjust the length difference between the two arms of the
MZI randomly. However, it is difficult to change the length difference of the two arms in a MZI with high speed
using the current technology. To solve this problem, Guan et al.”® proposed an alternative scheme where two
pulses are chosen passively to interfere with. When Bob receives a pulse block from Alice, he prepares a local
L-pulse reference encoded at phase 0. This L-pulse reference interferes with the L-pulse signal sent by Alice on
a beam splitter, as shown in Fig. 1(c) of ref. 29. For each block, Bob records the status of his two detectors with
timestamps, i and j.

Assume both Alice and Bob have exactly one photon in their respective L-pulse trains. The states of Alice and
Bob can be represented by

1 L S; -+
— —1)a."|0),

1 XL: +
L3 b0),
i ()
respectively, where a;", b," are the creation operators. Since there is a photon in each L-pulse block from Alice and
Bob respectively, Bob would obtain at most two detection clicks. He chooses the block where there are exactly two
detection clicks and announces their positions i and j (if i = j, the detection result is discarded). The raw key is the
relative phase between these two pulses in the L-pulse signal. Alice can derive this phase difference from her
record. After the interference and Bob’s post-selection, the quantum state at the two detectors becomes one of the
following states:

(1 = (=)%*)d; e 10), (1 — (—1)"*9)¢"df o), 3)

(1+ (=D |0), (1 + (—1*)d;"d o), “)

where ¢;" and d;" are the creation operators at the two detectors respectively, as shown in Fig. 1(c) of ref. 29. This
means if Alice’s ith and jth pulses have the same phase, i.e., s;=s;, the two clicks should be triggered by the same
detector. If Alices ith and jth pulses have different phases, the two clicks should be triggered by different detectors.
Thus Bob can derive the relative phase by comparing the measurement results of the ith and jth pulses.

The QPDQ protocol based on the PRRDPS QKD protocol.  Without loss of generality, the proposed
protocol involves two parties: the database holder Bob and the user Alice. It includes two stages: (1) the QOKD
stage, and (2) the CPQ stage. The details of the proposed QPDQ protocol are described as follows.
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The QOKD stage. (1) Alice and Bob each have exactly one photon in their N+ 1-pulse trains. The states of Bob
and Alice can be represented by

N+1
—1)%ib;|0),

VN E ®)
N+1
+

respectively, where s; € {0, 1} denotes the phase of Bobs ith pulse.

(2) Alice chooses the block where there are exactly two detection clicks. After the interference and Alice’s
post-selection, the quantum state at the two detectors becomes one of the four states in Eqs (3) and (4) (see
Fig. 1(c) of ref. 29). Alice announces the position i (if i =}, the detection result is discarded). Alice can derive
this phase difference from her record and obtain the key bit s;® s;. Then Bob takes the bits s;=s,® s, 5;Ds), ...,
DS 1 SiBSi 1 --» 5P Sy, as his N-bit key, K.

The CPQ stage. Bob encrypts his database with the key K. Suppose Alice knows the jth bit K; and wants to
retrieve the ith item X;. She publishes the number s=j — i. Then Bob shifts K by s and uses the new key to encrypt
his database. Because X; is in fact encrypted by K;, Alice can decrypt X; correctly.

Security analysis. In the QPDQ protocols, the security is mainly analyzed in terms of the user security and
database security.

Database security. Assume Alice is dishonest. When Alice cheats, Bob is automatically regarded as honest.
If Alice wants to obtain more items in Bob’s database, she has to try to obtain more key bits in the raw key s;. In
the ideal case, according to Eq. (7), after the QOKD stage, Alice obtains the relative phase between the two pulses
in the N+ 1-pulse signal and thus obtains one and only one key bit s;& s;. Different from ref. 11, where Alice who
takes charge of preparing the photon signal maybe prepares a fake signal to cheat Bob, in the present scheme, the
server Bob is responsible for preparing the pulse signal and he should prepare the ideal N+ 1-pulse single-photon
signal.

However, in the practice case, Bob’s pulse train maybe has 2 <# <N+ 1 photons and Alice’s pulse train maybe
has 2 <m < N+ 1 photons. With this assumption, there are three cases. The first one is that both clicks come
from Bob’s photons. The second one is that both clicks come from Alice’s photons. The third one is that one click
is from Bob’s photon and the other is from Alice’s photon. In this case, although Bob and Alice may have multi-
ple photons, but only one of his and her photons is respectively selected so that this case is identical to the ideal
single-photon case. Here, we focus on the first two cases.

Both clicks come from Bob’s photons. Assume the two photons are both from Bob, then after the inter-

ference by the beam splitter which replaces b, by (¢;" + d;)/+/2 and a;" by (c;" — d,7)/-/2, the resulting detec-
tion result will be

[ Z (—=1)% b+][ Z (—1)% b+]

N+1 N N+1 N
Z(—l +d)[2( Frdh
(N+ Pt
1 "L + g+ + g+ g+
mz(cc +dd +Cd +Cd)
i=1

+ > 20 + dfd + g+ cﬁd;)].

1<i<j<N+1

)

For the first item in Eq. (7), Alice discards it in the post-selection because i =j. One can see that the events that the
same detector clicks (¢;’¢;” and d,*d;") and different detector clicks (¢;'d;" and ¢;"d;") have the same amplitude
and thus the same probability. Thus whatever Bob’s phase encoding is, there will be 50% bit error for Alice’s bit.

Both clicks come from Alice’s photons.  For this case, the situation is similar. Assume the two photons are
both from Alice, then the resulting detection result will be
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and the same conclusion holds.
One click is from Bob’s photon and the other is from Alice’s photon.  Assume the two photons are

from Bob and Alice, respectively. After the interference by the beam splitter, then the resulting detection result
becomes

N+1
Z( T+ dh Z (c/f
2( i=1
_ 1 NZH(fl)S*'(CJrc+ — d*dh
TINTD 2 i Ci i 9
D (C Y (—l)sj)(cfrdi+ - Ci+dj+)
1<i<j<N+1

+ > (DT (D) - d,.*dj*)].
1<i<j<N+1 9)

If s;s;= 1, the detectors on different sides click. Otherwise, the detector on the same side clicks twice. Thus,
Alice announces the position i. The raw key is the relative phase between these two pulses in the N+ 1-pulse
signal. Alice can derive this phase difference from her record and obtain the key bit s;® s;. Then Bob takes the bits
Sp=8; DS, ;D Sy ..o, ;DS 1, ;DS 15 -..> $;D Sy as his N-bit key, K.

Even if Alice obtains clicks in multiple positions, she can only announce a position i. Her attack cannot bring
her any benefit. Therefore, one can see that to realize the proposed QPDQ protocol, Alice and Bob should prepare
the ideal N+ 1-pulse single-photon state.

User security. Assume Bob is dishonest. When Bob cheats, Alice is automatically regarded as honest. As
we know, unconditionally secure private queries are known to be impossible, so cheat-sensitive QPQ is desira-
ble>7810-24 Our protocol is also cheat-sensitive in terms of the user security. This is because Bob cannot obtain the
retrieval address and give a correct answer for the query simultaneously. Next we will briefly discuss the probabil-
ity with which Bob can obtain the position of Alice’s bit in the raw key. Now let’s discuss two cases.

Bob takes a fake N+ 1- pulse single-photon-signal attack. Assume dishonest Bob’s state can be rep-
resented by a general state Z;N +1y,b7[0). Here "N 4|7, = 1.

After the interference by the beam splitter, the resulting detection result becomes

N+1 N+1
*NJF E% ; ,—N+ Z ]
1 '\il + [Ail o+
vt +dh) ¢” —d;
2(N+ l) i\C; i i=1( i i)
pasy +gt Tt gt
vilei'et —dfdn) + (vi = y)(d — ¢ d))
2(N+ D Z 1§i<%g:N+1 o ’

+ > i+t - dfdj*)].

1<i<j<N+1 (10)

Alice obtains the result with two clicks (i, j) on the same side and different sides with probabilities l— and

2(N+1)
b= , respectively. This implies that Bob can bias the probability of obtaining results for Alice. But this does not
2(N+1)°

decrease Alice’s privacy. In this sense it is still cheat-sensitive. Bob will inevitably lose the knowledge about the
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value of the key bit when he tries to obtain its conclusiveness. As a result, Bob might send a wrong answer to Alice,
which will be found by Alice at a later time.

Bob takes a fake N + 1-pulse-two-photon-entanglement-signal attack. Dishonest Bob maybe
takes another cheating strategy. Assume Bob prepares a two-photon entangled state in his N+ 1-pulse train. Bob
keeps one photon and sends the other photon to Alice. After Bob’s N+ 1-pulse signal interferes with Alice’s
N+ 1-pulse reference on the beam splitter, Bob can determine the position of the corresponding entangled pho-
ton by measuring the partner photon kept by him to know which position it collapses at after interference. This
cheating strategy cannot be found by Alice. However, Bob only can determine which position the corresponding
entangled photon collapses at without obtaining any information about which position Alice’s photon collapses
at. Because the positions of the detector clicks decide Alice’s key bit. That is, if the detectors click on different sides,
Alice judges ;@ s;= 1 and her key bit is 1. Otherwise, 5;®s;= 0 and her key bit is 0. Therefore, if Bob’s entangled
photon is positioned at the timestamp #, and Alice’s announcement is also i, Bob cannot obtain the information
about Alice’s bit. However, if Bob’s entangled photon is positioned at the timestamp j, and Alice’s announcement
is i, Bob will obtain the information about Alice’s bit. Therefore, Bob can obtain Alice’s bit with a probability

Z(NN 5 To reduce the probability, Alice can take some eavesdropping detection strategies before interference on
the beam splitter. For example, Alice receives the N+ 1-pulse signal and attains the total photon number # of the

N+ 1-pulse train by performing a photon number quantum nondemolition (QND) measurement. If the pulse
train contains more than one photon (n > 1), Alice can judge that Bob is cheating and abort the protocol.
Otherwise, she continues the protocol.

Discussion

Let’s recall the original RRDPS QKD protocol®®. Zhang et al.*° found that the phase error rate bound given in the
original RRDPS protocol based on weak coherent pulses (WCPs)? is not tight, since the phase error rate should
never exceed 1/2. Then they developed a tighter bound for the phase error rate by using phase-randomization
and the decoy-state method*"*2. More importantly, in the original RRDPS QKD protocol?, the length of the pulse
block, L, is a critical parameter which affects the performance and technical difficulty of implementation of the
protocol. It has also been proved by Zhang et al.*° that, with new analysis method with and without decoy states,
and also by the decoy-state method, even if L is small (i.e. L=32), the performances is very close to the optimal
L case.

In contrast, in the PRRDPS QKD protocol?, the optimal L is more than 8000, which is not practical. So our
proposed QPDQ protocol based on the PRRDPS QKD protocol?® will be more practical and of performance
improvement if Zhang et al.’s results®® are introduced into the proposed QPDQ protocol. That is, we may use
the decoy-state method in our proposed protocol so that it is more practical and easier to implement in practice.
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