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' We study the rotational dynamics of solid chiral and birefringent microparticles induced by elliptically
. polarized laser light in optical tweezers. We find that both reflection of left circularly polarized light and
. residual linear retardance affect the particle dynamics. The degree of ellipticity of laser light needed
. toinduce rotations is found. The experimental results are compared with analytical calculations of the
. transfer of angular moment from elliptically polarized light to chiral birefringent particles.

Optical tweezers'? (OT) are a powerful tool to study optical forces and torques on physical systems both at the
* micro®7 and the nanoscale®’. Optical forces are the consequence of the conservation of linear momentum in the
. light-matter interaction, driving particles to a laser beam focal spot if their index of refraction is higher than that
. of the surrounding medium?. Angular momentum (AM) may be transferred as well, inducing optical reaction

torques on trapped objects'®!!. Particle alignment and/or rotations in OT have been observed as a consequence of
© anisotropic scattering of trapping light on non-spherical particles'>'4, of light absorption'>-!® or birefringence>!?
. by dielectric particles due to the interaction with beams carrying spin and/or orbital AM*.
Chirality derives from the lack of mirror symmetry of an object. The two specular images of the object cannot
. be superimposed, and are defined as the left- or right-handed version (enantiomer) of the object itself. Circularly
. polarized (CP) light is also a chiral entity, where the left or right handedness depends on the electric field sense
. of rotation. The interaction of chiral light with chiral objects, such as cholesteric liquid crystals (CLCs), gives

rise to the selective circular reflection?’-?, which can be used to study the transfer of both linear and angular
 momentum from light beams to matter?*-?°. In particular, control of radiation pressure?, passive optical sorting?,
- helicity-dependent optical trapping?® of spherical liquid crystal droplets, and trapping??? and rotations of solid
. chiral microparticles?*?” have been observed.

Here, we investigate the dependence of rotational frequency of chiral birefringent microparticle on the elliptic-
© ity of the incident light. The expected sinusoidal dependence of chiral particles rotation related only to the selec-
. tive Bragg reflection, as reported in the ref. 23 is not sufficient to explain observations in the case of microparticles
. in the low chirality regime?®. An additional contribution to the optical torque due to the optical retardance of the

microparticles needs to be considered to fit our experimental data. In the first part of the paper we calculate the
radiation torque on a chiral birefringent particle due to the interaction with a plane electromagnetic wave. In the
second part we compare the theory with the experimental results by fitting the observed rotational frequency
dependence with light ellipticity. Finally, we discuss the different components of the optical torque acting on the
chiral birefringent particles.

Results

Calculation of the torque due to chiral reflection and optical retardance. The selective Bragg
. reflection of left circularly polarized (LCP) light causes the transfer of AM from a trapping beam to a left-chiral
© microparticle in an optical tweeers?, with a transfer of optical torque 2R*P/w, R* being the reflectance of the

material to LCP light. On the contrary, right circularly polarized (RCP) light is fully transmitted and it does

not contribute to optical torque. In the general case of elliptically polarized light, the transferred optical torque
. upon reflection on chiral structures takes the form (P/w) R*(I + sin 2¢) where ¢ is the degree of ellipticity of the
. light (¢ =0 or 71/2 corresponds to linearly polarized beam, ¢ = +7/4 to circularly polarized light). Under the
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effect of this torque, particles may rotate if the selective Bragg reflection is sufficiently large?. Thus, the particle
rotation frequency fis obtained by the equilibrium condition between optical torque and viscous drag torque
T jrag= 8TNRQ, where 7 is the viscosity of the surrounding medium, R, is the particle radius and Q= 27 fis the
angular rotation frequency.

We consider an elliptically polarized field incident on a chiral birefringent particle in low chirality regime
where a residual retardance can affect the optomechanical behaviour. This field is expressed in terms of com-
ponents parallel and perpendicular to the optical axis of the material>* (see also Supplementary Information):

E= Eoe_i“’t [(cos 8 cos p—isin O sin @)X + (sin O cosp + icosf sin ) y] (1)

where ¢ is the ellipticity of the field and 6 is the angle formed by the axis of the waveplate yielding the light ellip-
ticity and the optical axis of the material. The plane wave spin angular momentum (SAM) density? is:

= E = =
b=t xF @
We model the light-particle interaction as a two-step phenomenon: first the light is partially transmitted by the
chiral particle with Fresnel coefficients ¢*, for the LCP component, and ¢~, for the RCP one, respectively. Then, the
transmitted light field propagates in a birefringent medium, where the phase shift due to the thickness d is kdn,
with k being the vacuum wavevector and # the index of refraction. In low chirality regime?, we have a partial
reflection of the left-handed circular component and total transmission of right-handed component, so that
Tt = (t7 =1 — R",and T~ = 1. Thus, the resulting radiation torque on the birefringent left chiral particle is:

= P|R' . R* o . .
Ui=— 7[1 +cos ké] +sin 2¢p|(1 —cos k) + 7(1 +cos kb)| + t7 sin kdcos 2psin 2012
w

(©)

where § =d(n,— n,) is the residual retardance related to the material birefringence, i.e., the extraordinary, n,, and
ordinary, n,, refractive indexes difference, An=n,— n,. We integrated on a volume element AcAt, and consid-
ered that P = geEOZA is the power of the incident light field.

Spinning torque, alignment torque, and rotational frequency f.  The radiation torque I',,; (Eq. 3)
is the sum of three contributions (see Supplementary Information). The first and the second terms are “spinning
torques” that cause the particle to spin continuously. The first is only related to the particle reflectivity, while the
second one also depends on the ellipticity of the light ¢. The third contribution is an “aligning torque” which
tends to orient the optical axis of the particle with the major axis of the polarization ellipse. The total spinning
torque is maximum (positive) when ¢ =7/4 and is minimum (negative) for ¢ = —u/4, where the aligning torque
vanishes. In general, the particle rotates as soon as the spinning part of the electromagnetic torque is greater than
the aligning torque.

As discussed above, I, is the radiation torque on the chiral particle due to the light field. At equilibrium, this
torque is equal to the viscous drag torque, T4, = 871R,’, experienced by the rotating particle in water, with
1n=1.002mPa s at 20 °C. Since the angular rotation frequency is ) = %, we obtain a differential equation in the
variable 0, of the form:

f = A + Bsin26 (4)

By integration®*>*, the particle rotation frequency, f, is obtained as:

+ +
[1 + R—] — [1 — R—]coské
2 2

5 1/2

sin® 2¢p +

2 2 PA + +
f=Ff, Rey(&a" = B) = 327r3c7]R03 + RT[1 + cos k6]sin2¢||1 + RT — [1 — %]coské—l—
(RYY 2 Fy 2 .2
+ [1 + coskd]” — (1 — R")cos” 2¢ sin” ké

®)

with parameters A and B proportional to the spinning torque and alignment torque, respectively (see
Supplementary Information). This formula has been used to fit the dependence of measured rotation frequencies
as a function of the different degree of light ellipticity ¢ in our optical tweezers experiments.

Chiral microparticles and rotation measurements in optical tweezers. Optical trapping and
light-induced rotation measurements have been carried out on solid left(L)-chiral microparticles (Fig. 1) obtained
by UV light curing of CLC droplets in two OT experimental setups (see Methods) operating at 785 nm and
830 nm wavelengths. In brief, the L-chiral microparticles we use in our studies are made of polymeric CLC, that
is a chiral optically anisotropic dielectric medium in which the average molecular orientation, described by a unit
vector n (director), rotates by 2w around the axis of the supramolecular helical structure over a distance p, named
cholesteric pitch®'. Such a chiral ordering may be right(R)- or left(L)-handed. Thus, due to the combination of the
birefringence and the helicoidal structure, the CLC is a self-organized one dimensional photonic bandgap mate-
rial, in which a wavelength band is selectively reflected due to the Bragg reflection (Fig. 1c) when light propagates
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Figure 1. Sketch of the experimental set-up and chiral particle images. (a) A laser beam is expanded by

a two lens telescope (L1 and L2) to overfill the back aperture of the high numerical aperture objective. Light
polarization is controlled by a quarter waveplate. Light scattered from the trapped particle interferes with
unscattered laser light in the back focal plane of the condenser of the microscope. The interference pattern is
projected by a collection lens onto a four-quadrant photodiode (QPD). The analog outputs from each quadrants
are combined to generate signals proportional to the spatial displacements x, y, z of the trapped particle.

(b,c) Optical polarization microscopy images of a chiral microparticle taken in transmission (b) and reflection
(c) mode through crossed polarizers.

along the helicoidal axis*'*2. The propagation of a plane wave along this axis is forbidden for circularly polarized
light with helicity parallel to the one of the material structure and wavelength within a spectral range (named
stop-band). In our case the stop-band is located between 780 nm and 850 nm, thus, both trapping wavelengths fall
within the stop-band of the chiral microparticles fulfilling the Bragg reflection condition?. The shell structure of
the particles is determined by droplets radius, R, helical pitch, p, and material parameters. In the particular case
of particles made of a small number of pitches, a not negligible optical retardance can result when the supramo-
lecular helix is not complete (Ry/p is not an integer).

The rotational frequencies of trapped microparticles at different light ellipticity are obtained by fitting the
autocorrelation functions (ACFs) of the tracking signals acquired by back focal plane interferometry'** on a
quadrant photodiode (QPD). Rotations of the trapped particles about the laser beam propagation direction are
manifested in the transverse fluctuating QPD signals. Figure 2a,b, and ¢ show the QPD transverse signals for an
optically trapped L-chiral microparticle at different waveplate angles. The noise-like signals are related to the ther-
mal fluctuations of the particles in the optical tweezers three-dimensional confining potential®>. In addition to the
exponential decay (Fig. 2d-f) of the positional fluctuations dictated by the OT, when particles rotate in the trap,
a modulation (Fig. 2a,b) is superposed to the thermal fluctuations and a corresponding cosinusoidal oscillation
appears in the transverse ACFs (Fig. 2g,h). The fitting of the exponential decay and the cosinusoidal oscillation
enables an accurate measure of both the optical trapping forces and rotational frequencies for the ellipticity values
that drive the particle rotations. Instead, no modulation is found otherwise (Fig. 2i).

The results of the rotational frequency of about five sets of different microparticles with similar radius, Ry~1 pm,
as a function of ellipticity are summarized in Fig. 3a. The data are arranged according to the same experimental
conditions of power and wavelength (see legend in Fig. 3a). Continuous lines are best fit to the data following
Eq. 5, while error bars represent the standard error from the mean value from the analysis of 3 different transverse
ACFs signals. We find that rotations are observed only in a restricted waveplate angle range around left circular
polarization of the trapping beam. Figure 3b shows the frequency data (and fit) normalized to their maximum
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Figure 2. Transverse QPD signals at different waveplate angles: 45 deg (a), 55 deg (b), and 65 deg (c). Black
lines are cosinusoidal fit to the data. In proximity of the left-handed polarization a modulation appears on top
of the particle positional fluctuations typical for a trapped particle in optical tweezers indicating the onset of
rotations. Autocorrelation functions (ACFs) showing the particle dynamics at short times (d-f) and at long
times (g-1i). At short times, the exponential decay is dictated by the optical tweezers trapping potential and the
overdamped thermal fluctuations. At long times, the particle rotation appears as a cosinusoidal modulation in
the ACFs when the ellipticity is close to the left-handed polarization (g,h), while no modulation is visible (no
rotation) when the ellipticity is away from left-handed polarization.
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Figure 3. (a) Rotational frequencies of trapped particles as a function of the field ellipticity (angle ¢) as
measured on chiral microparticles of different size, for different power and wavelength, as summarized in the
legend. Error bars represent the standard deviation from the mean value from the analysis of 3 set of transverse
ACFs signals in the same experimental conditions. Continuous lines are best fit to the data following Eq. 5.

(b) Frequency data scaled with respect to their maximum and compared with the expected behaviour if only
reflection was the cause of the induced optical torque (black line). Reflectivity (c) and optical retardance

(d) values and uncertainties obtained from the fit of the measured frequencies in (a) as a function of particle
radius. Error bars on the radii represent an uncertainty of about 5% for the trapped particle size measurement
from CCD images.

(at ¢ =7/4) and compared with the expected behaviour if only reflection was the cause of the induced optical
torque (black line). Thus, a simple (I + sin 2¢) dependence due to the reflection of left-circular polarization
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Figure 4. (a) Spinning torque (red dash-dot curve) and maximum aligning torque (blue dash-dot-dot

curve) based on the averaged results of the fit in Fig. 3. Black solid curve represents the expected torque if

only reflection from the chiral particle was the origin of rotations. Gray dashed areas are the regions where
particle rotations are allowed. (b) Expected values of the rotational frequencies normalized to their maxima at
different reflectance of the trapped particle and at fixed retardance (obtained as the average value from the fit of
experimental data).

(black curve in Fig. 3b) is not sufficient to explain the observed dependence of the rotational frequency on light
ellipticity.

Indeed, it is worth noting that confining liquid crystals in micrometer-sized geometries allows a wide range
of thermodynamically stable supramolecular configurations that result by the combination of chirality, elasticity,
and interface properties. The self-organized internal configuration of the droplet strongly depends on the molec-
ular anchoring at the interface and on its radius R, with respect to the nominal pitch p of the helical structures. In
our case, Ry~ 1pm and p~0.51 pm, and, thus, the low chirality regime can be considered?®*"*? that is in agree-
ment with a low reflectivity and a not negligible residual retardance.

The fit of all data (solid lines in Fig. 3a,b), based on Eq. 5, has been obtained with only two parameters, one
connected to the reflectance, R™, of the trapped particle and the other to its optical retardance, §. The fitted
reflectance values range from 0.03 to 0.07 (Fig. 3¢) while the residual retardance has an average of 622 nm
(Fig. 3d), which corresponds to an effective birefringent layer thickness d of approximately 160 nm assuming the
CLC nominal birefringence An220.14 at the OT wavelength. Note that while for the reflectance (Fig. 3c) we can
observe an increasing trend with particle radius, the optical retardance (Fig. 3d) does not appear to change in the
range of particle size investigated. The reflectance values are compared with the theoretical reflectance (blue line
in Fig. 3c) evaluated for a CLC layer with a thickness d = (2/3)R,?. The measured values appear to be smaller than
the theoretical reflectance, suggesting that the real reflectance connected to the helical pitch is strongly affected
by the distortion of the cholesteric layer when confined in a small microsized volume?,

Equation 5 has real values, corresponding to rotations, only if |A| > |B|, that is, when the absolute value of
the spinning torque is greater than the absolute value of the aligning torque (Fig. 4a). We find that rotations are
possible only in a restricted range of \/4 waveplate angles centred on LCP. The model based on Eq. 5 permits,
in principle, also low frequency rotations around RCP (see fits in Fig. 3a,b), but the expected frequencies are so
small that are below the detectable level related to the finite observation time (2 s) and the presence of the intrinsic
thermal fluctuations in the OT.

Discussion

The data shown in Fig. 3 and the fit based on Eq. 5 show that particle dynamics can be explained only by intro-
ducing a retardance of the trapped particle. In Fig. 4b, the expected rotational frequency at increasing reflec-
tance coeflicients and fixed retardance shows that a reflectance of R* = 0.5 is enough to recover the simple (1+
sin 2¢) behaviour. However, in experiments, the three-dimensional trapping of chiral microparticles with large
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reflectance is not occurring, as radiation pressure destabilizes the trap pushing the particles along the optical
axis®. We also expect the particle residual retardance to be small, as the microparticles have a radial arrangement
of the cholesteric layers and thus, are optically isotropic?.

In conclusion, we have reported on the transfer of AM from elliptically polarized trapping beams to chiral
birefringent microparticles. The model we used, which takes into account the reflectivity of chiral mirrors and a
residual retardance effect of the material, fits well the experimental observations with microparticles in low chi-
rality regime. We have also found the angular regimes in which the ellipticity of the trapping beams can induce
rotations. This unique combination of chiral/birefringent optomechanical properties paves the way to a wider
range of optical control of the mechanical interaction between light and matter at the mesoscale.

Methods

Chiral microparticles?! have an inner structure based on L-chiral cholesteric concentric layers in a spherulite-like
radial configuration. The reflectance and transmittance of these microparticles can be finely tuned by controlling
the particle size (i.e., particle radius R,). They are prepared as follows. First, a pure reactive mesogen contained in
RMS03-001C blend (Merck, Germany) is obtained extracting its solvent PGMEA (propylene glycol monomethyl
ether acetate) by vacuum evaporation at 90 Celsius. This is mixed with 14 wt% L-chiral dopant (ZLI-811, Merck)
yielding a CLC phase. This has a photonic band gap centred at about 815 nm, fulfilling the selective reflection
condition for both the wavelengths (830 and 785nm) used in our optical tweezers. Then, a CLC droplet emulsion
is prepared with type I ultrapure water. The emulsion is polymerized in nitrogen environment for at least 4h
under a UV lamp having emission wavelength centred at about 350 nm, obtaining solid chiral particles with size
ranging from hundreds of nanometres up to tens of microns. The refractive indexes, #n,=1.66 and n,=1.52, of
the chiral material are evaluated by the Cauchy formula for our wavelengths®, resulting in an helicoidal pitch, p,
of approximately 0.51 pm.

Few tens of microliters of a chiral particle aqueous suspension are loaded in a small glass chamber for optical
trapping experiments. Two different optical tweezers setups are used with diode laser sources at 830 nm (150 mW)
and 785nm (80 mW) wavelength determined from specsheets. The diode lasers are home-built and stabilized in
temperature and current through active feedback circuits. High numerical aperture objectives (Olympus Uplan
FLN, X100, NA = 1.3) give diffraction limited spots. Optical power at the sample is measured by a power meter
(Thorlabs PM160) placed at the output pupil of the objective lens. Its measure has an uncertainty of about 10%
estimated as the standard error over five successive measurements. The ellipticity of light is controlled with
both liquid-crystals (Thorlabs LCC1111-B Liquid Crystal Retarder driven by Thorlabs LCC25 Lyquid Crystal
Controller) and solid X/4 and X/2 waveplates. Back focal plane interferometry*?, where the interference between
the laser beam and the light scattered by the trapped particle is imaged on a four-quadrant photodiode, is used to
detect the trapped particle rotations'*. The autocorrelation function of the tracking signals (Fig. 2) is analysed to
obtain the particle rotation frequencies®. In fact, for a rotating particle in an optical trap, ACFs are'*:

2
Ciy(T) = kB—Tef'“’iT + 2 cos(271)
K; 2

with o, = ™ the relaxation frequency, x; the trap spring constant in the i-direction, -y the drag coefficient, a the

calibrationvamplitude of the particle rotation and Q the angular rotation frequency. Thus, from the fit of the
experimental ACFs, both trap spring constants and rotational frequency can be obtained, provided that y= 67
R,n, with 7 the medium viscosity, is known. To this aim, the radius R, of each trapped particle is measured by
video microscopy. To monitor the trapped particles, a charge coupled device camera is used (Fig. 1a). The trapped
particle images are calibrated by imaging a microscope slide ruler, with an estimated uncertainty AR of 0.05pum
related to the image resolution for visible light. For each particle image the diameter is measured 5 times from the
CCD image, so that a mean radius, Ry, is obtained with an estimated uncertainty of about 5%.
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