Figure 1
From: Encoded diffractive optics for full-spectrum computational imaging

Overview of the imaging system.
We computationally design stacks of DOEs (b) that can encode arbitrary lenses for different geometric configurations, such as relative shift or rotation. Examples include focus-tunable lenses, tunable cubic phase-plates, and axicons shown in (a) with their corresponding phase transmission functions. Given a target phase, we design two or more phase plates using complex matrix factorization (c). If more than two phase plates are used even complex optics like zoom-systems can be designed. A novel computational approach enables broadband imaging for our encoded lenses (d,e). When a scene is imaged with our diffractive encoded lens, points with different spectral distributions result in significantly different PSFs. Our reconstruction algorithms (e) jointly self-calibrates the spatially-varying, scene-dependent PSFs and recovers the latent image exploiting cross-channel statistics. Aberrations in the reconstruction are effectively removed (actual reconstruction shown here).