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True Randomness from Big Data
Periklis A. Papakonstantinou1,*, David P. Woodruff2,* & Guang Yang3,*

Generating random bits is a difficult task, which is important for physical systems simulation, 
cryptography, and many applications that rely on high-quality random bits. Our contribution is to show 
how to generate provably random bits from uncertain events whose outcomes are routinely recorded 
in the form of massive data sets. These include scientific data sets, such as in astronomics, genomics, as 
well as data produced by individuals, such as internet search logs, sensor networks, and social network 
feeds. We view the generation of such data as the sampling process from a big source, which is a random 
variable of size at least a few gigabytes. Our view initiates the study of big sources in the randomness 
extraction literature. Previous approaches for big sources rely on statistical assumptions about the 
samples. We introduce a general method that provably extracts almost-uniform random bits from big 
sources and extensively validate it empirically on real data sets. The experimental findings indicate that 
our method is efficient enough to handle large enough sources, while previous extractor constructions 
are not efficient enough to be practical. Quality-wise, our method at least matches quantum 
randomness expanders and classical world empirical extractors as measured by standardized tests.

Randomness extraction is a fundamental primitive, and there is a large body of work on this; we refer the reader 
to the recent surveys1,2 and references therein. The extracted true random bits are critical for numerical sim-
ulations of non-linear and dynamical systems, and also find a wide array of applications in engineering and 
science3–7. There are tangible benefits to linking randomness extraction to big sources. First, big sources are 
now commonplace8,9. Second, since they are in common use, adversaries cannot significantly reduce statistical 
entropy without making them unusable10. In addition, the ability to extract from big samples leverages the study 
of classical-world extractors11 and quantum randomness expanders12, since they allow us to post-process while 
ignoring local statistical dependencies. The contribution of our work is to give an extractor which has theoretical 
guarantees and which works efficiently, in theory and in practice, on massive data sets. In particular the model of 
processing massive data we study is the data stream model discussed in more detail below.

The main obstruction in big source extraction is the lack of available computational resources. Previously, the 
study of general extractors was largely theoretical. Note that no known theoretical construction could be applied 
even on samples of modest size, e.g., 10 megabytes (MB). Even if it had been possible to gracefully scale the per-
formance of previous extractors, processing a 20 gigabyte (GB) sample would have taken more than 100,000 years 
of computation time and exabytes of memory. In contrast, our proposed method processes the same sample using 
11 hours and 22 MB of memory. The proposed method is the first feasibility result for big source extraction, but is 
also the first method that works in practice.

Extractors from Big Sources
Let us now state things more precisely. Randomness can be extracted from an (n, k)-source X, where X is a random 
variable over {0, 1}n whose min-entropy = =∞ ∈

−X X xH [ ] min log (Pr[ ] )x {0,1} 2
1

n  is at least k. The min-entropy rate of 
X is κ =​ H∞[X]/n. Min-entropy is a worst-case statistic and in general cannot be replaced by the average-case 
(Shannon) entropy = ∑ = =∈

−X X x X xH[ ] Pr[ ]log (Pr[ ] )x {0,1} 2
1n , an issue that we will elaborate more on later. To 

extract randomness from a source X, we need: (i) a sample from X, (ii) a small uniform random seed Y, (iii) a lower 
bound k for H∞[X], and (iv) a fixed error tolerance ε >​ 0. Formally, a (k, ε)-extractor Ext: {0, 1}n ×​ {0, 1}d →​ {0, 1}m 
outputs Ext (X, Y) that is ε-close to the uniform distribution, i.e., ε∑ = − ≤∈ X Y zPr[Ext( , ) ]z

1
2 {0,1}

1
2

m m , when 
taking input from any (n, k)-source X together with a random seed Y. In typical settings = =d n npolylog( ) (log )c

2  
for a constant c >​ 0, and m >​ d. The seed is necessary since otherwise it is impossible to extract a single random bit from 
one source2. We note that other notions of the output being random, other than closeness to the uniform distribution, 
are possible and have been studied in a number of general science journal articles13–16. These are based on measures of 
randomness such as approximate entropy. Since our measure is total variation distance to the uniform distribution, our 
generated output provably appears random to every other specific measure, including e.g., approximate entropy.
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What does it mean to extract randomness from big sources? Computation over big data is commonly for-
malized through the multi-stream model of computation, where, in practice, each stream corresponds to a hard 
disk17. Algorithms in this model can be turned into executable programs that can process large inputs. Formally, 
a streaming extractor uses a local memory and a constant number (e.g., two) of streams, which are tapes the algo-
rithm reads and writes sequentially from left to right. Initially, the sample from X is written on the first stream. 
The seed of length d =​ polylog(n) resides permanently in local memory. In each computation step, the extractor 
operates on one stream by writing over the current bit, then moving on to the next bit, and finally updating its 
local memory, while staying put on all other streams. The sum p of all passes over all streams is constant or slightly 
above constant and the local memory size is s =​ polylog(n).

The limitations of streaming processing (tiny p and s) pose challenges for randomness extraction. For exam-
ple, a big source X could be controlled by an adversary who outputs n-bit samples x =​ x1x2…​xn where 
… = …+∆ +∆x x x xt t t t1 1 2 2

, for some t1 ≠​ t2 and large integer Δ​ >​ 0. Besides such simple dependencies, an extrac-
tor must eliminate all possible determinacies without knowing any of the specifics of X. To do that, it should 
spread the input information over the output, a task fundamentally limited in streaming algorithms. This idea was 
previously18 formalized, where it was shown that an extractor with only one stream needs either polynomial in n, 
denoted poly(n), many passes, or poly(n)-size local memory; i.e., no single-stream extractor exists. Even if we add 
a constant number of streams to the model, the so-far known extractors19,20 cannot be realized with no(log )2  
many passes (a corollary17), nor do they have a known implementation with tractable stream size.

An effective study on the limitations of every possible streaming extractor goes hand in hand with a concrete 
construction we provide. The main purpose of this article is to explain why such a construction is at all possible 
and our focus here is on the empirical findings. The following theorem relies on mathematical techniques that 
could be of independent interest (Supplementary Information pp. 26–30) and states that Ω n(log log )2 2  many 
passes are necessary for all multi-stream extractors. This constitutes our main impossibility result. This unusual, 
slightly-above-constant number of passes, is also sufficient, as witnessed by the two-stream extractor presented 
below.

Theorem. Fix an arbitrary multi-stream extractor Ext: {0, 1}n ×​ {0, 1}d →​ {0, 1}m with error tolerance ε =​ 1/poly(n), 
such that for every input source X where H∞[X] ≥​ κn, for any constant κ >​ 0, and uniform random seed Y, the output 
Ext (X, Y) is ε-close to uniform. If Ext uses sub-polynomial no(1) local memory then it must make = Ωp n(log log )2 2  
passes. Furthermore, the same holds for every constant λ ∈ + number of input sources.

Our RRB Extractor
We propose and validate a new empirical method for true randomness extraction from big sources. This method 
consists of a novel extractor and empirical methods to both estimate the min-entropy and generate the initial ran-
dom seed. Figure 1 depicts a high-level view of the complete extaction method. This is the first complete general 
extraction method, not only for big sources but for every statistical source.

We propose what we call the Random Re-Bucketing (RRB) extractor. For our RRB extractor we prove 
(Supplementary Information pp. 11–25) that it outputs almost-uniform random bits when given as input a single 
sample from an arbitrary weak source – as long as the source has enough min-entropy. Mathematical guarantees 
are indispensable for extractors, since testing uniformity and estimating entropy of an unknown distribution, 
even approximately, is computationally intractable21.

A key-feature of the RRB extractor in Fig. 2 is its simplicity, with the technical difficulty being in proving 
its correctness, which requires a novel, non-trivial analysis. RRB is the first extractor capable of handling big 

Figure 1.  High-level overview of the extraction method. (a) The core of the proposed method is the 
streaming extractor. The description corresponds to one big source, with parameter estimation and initial 
seed generation done only once. Repeating the seed generation is optional, and is not needed for practical 
purposes. (b) The output of the proposed method is validated by standard statistical tests (NIST). On the ideal 
(theoretical) uniform distribution the P-values are uniformly distributed. We plot the histogram for 1,512,000 
P-values proving a high-level indication about the uniformly extracted bits, i.e., well-concentrated frequencies 
around the expected frequency μ =​ 0.01. This graph provides a visual overview (averaging), whereas detailed 
statistics are in the Supplementary Information.



www.nature.com/scientificreports/

3Scientific Reports | 6:33740 | DOI: 10.1038/srep33740

sources without additional assumptions. Previous works require either (i) unrealistic running times or (ii) ad 
hoc assumptions about the source. In particular, the local extractors such as von Neumann22 and Local Hash fail 
significantly in terms of output quality, whereas the throughput of Trevisan’s extractor19 and its followups degrade 
significantly (see Fig. 3) with the size of the sample12 even with practical optimization considered; e.g., 103,407 
years of computing time for a 20 GB input sample and ε =​ 10−3, κ =​ 1/2. We note that we choose to compare to 
the Local Hash and von Neumann extractors since these are the only extractors experimented upon in previous 
work (see ref. 23 for empirical work using von Neumann’s extractor, and see refs 12, 24 and 25 for empirical work 
using Local Hash), and importantly, both extractors happen to be streaming extractors. Thus, due to their special 
attention in previous work they are two ideal candidates for comparison. We refer the reader to Table 2, Fig. 3, and 
the Supplementary Information for details.

Figure 2.  The Random Re-Bucketing (RRB) extractor. The random seed of size polylog(n) is used only in 
Stages I & III. In Stage III the same local extractor h is used for the first γ fraction of blocks. The number of 
super-blocks b also depends on an error tolerance ε and the empirically estimated min-entropy rate κ. In the 
main body, we explain how to realize this description as an algorithm that uses two streams.

Figure 3.  Running time of RRB compared with other extractors. Running time is measured on input 
samples of size 1 GB–20 GB for von Neumann extractor, local hash extractor (with block-size 1024 bits), and 
for RRB (with k =​ n/4, n/8, n/16 and ε =​ 10−10, 10−20, 10−30). Trevisan’s extractor is only measured for ε =​ 0.001 
on samples of size up to 5 MB =​ 4 ×​ 107 bits, since the available implementations of finite fields cannot handle 
larger samples or smaller ε. The running time of Trevisan’s extractor on larger input size (in particular, 103,407 
years for 20 GB input) is estimated by polynomial fitting assuming all data in the main memory, which is an 
unrealistic advantage. The exact form of the fittest polynomial is determined through cross-validation and 
standard analysis of polynomial norms.
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The RRB extractor consists of the following three stages.

I.	   Partition the n-bit long input into =
ε( )b O log n

2  many super-blocks, each of length n/b. Inside each su-
per-block, choose uniformly and independently a random point to cyclically shift the super-block.

II.	   Re-bucket the b super-blocks into n/b many blocks each of size b, where the i-th block consists of the i-th bit 
from every (shifted) super-block, for i =​ 1, 2, …​, n/b.

III.	   Specify a local extractor h: {0, 1}b →​ {0, 1}κb/2 using the uniform random seed; for example, h can be a random 
Toeplitz matrix. Then, locally apply h on the first bO =​ γn/b blocks, concatenate, and output the result. Here 
the effectiveness factor γ =​ Ω(1) denotes the fraction of blocks used for local extraction.

This extractor can be realized with two streams and local memory size polylog(n) (more details of streaming 
realization on p. 5). (I) Cyclically shift every super-block using in total 4 passes (every pass operates on all 
super-blocks). (II) Re-bucket with 

ε( )O log log n
2 2  many passes and iterations where, in each iteration, the first and 

the second half of the first stream are shuffled with the help of the second stream. (III) Locally extract with 2 passes. 

Extractor and data setting

NIST Test Suite

Number of tests Observed (Ideal) freq. P-val < 0.0001

Raw data 2256 1931 (6.09) 1561 (0.22)

Von Neumann 2256 966 (6.09) 785 (0.22)

Von Neumann on adversary 2256 1507 (6.09) 1435 (0.22)

Local hash 2256 16 (6.09) 1 (0.22)

Local hash on adversary 2256 781 (6.09) 170 (0.22)

RRB 2256 4 (6.09) 0 (0.22)

RRB on adversary 2256 5 (6.09) 1 (0.22)

Table 2.   Comparative extraction quality performance. The raw data consists of 12 files each of size 1000 MB 
from the 12 data categories and the adversarial data are generated by simply replacing 10 MB in each file with 
fixed values. NIST tests are applied on the raw data and extraction output of von Neumann, local hash, and RRB 
extractors on raw data and adversarial data. The second column is the total number of NIST tests per setting. 
The third column is the number of NIST tests that fail because of proportion, and the fourth column is the 
number of NIST tests that fail because of the second-order P-value. All are compared with the expected number 
of the ideal uniform random bits. Except from RRB and “RRB on adversary”, all other test results indicate non-
uniform output (i.e. noticeably different from ideal uniform).

Data category 

NIST Test Suite DIEHARD Test Suite

# of tests
Observed 

(Ideal) freq. # of tests
Observed 

(Ideal) freq.

Compressed audio 564 0 (2) 144 2 (3)

Comp. video 752 4 (2) 144 4 (3)

Comp. images 752 1 (2) 144 2 (3)

Comp. social network 
data 3008 9 (8) 576 10 (12)

Comp. DNA 
sequenced data 752 1 (2) 144 3 (3)

Comp. text 3008 11 (8) 576 14 (12)

Audio 752 2 (2) 144 1 (3)

Video 752 1 (2) 144 1 (3)

Images 564 0 (2) 62 2 (1)

Social network data 2256 6 (6) 432 5 (9)

DNA sequenced data 752 2 (2) 144 2 (3)

Text 1504 1 (4) 288 7 (6)

Total 15416 38 (45) 2942 53 (61)

Table 1.   Empirically extracted bits versus ideal (theoretical) uniform random bits. Overall statistics of the 
empirically extracted bits using the proposed method. The second column is the total number of NIST tests per 
data category. The third column compares the number of NIST tests that the empirically extracted bits do not 
pass with the expected number of NIST tests (listed in parenthesis) that the ideal uniform random bits will not 
pass. Any number significantly above or below the one in parenthesis indicates non-uniformity (discussed in 
Empirical statistical tests on p. 5). Similarly, the fourth and fifth columns report the results for DIEHARD tests. 
Further statistics related to this table are reported in Supplementary Information Table S1.
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The implementation is scalable since it uses =
ε( )bO(log ) O log log n

2 2 2  passes and a = ⋅
ε( )b n nO( log ) O log logn

2 2 2  
bit random seed. For example, 44 passes and 57 KB of a random seed suffice to extract 1 GB of randomness from a 
20 GB input. (For min-entropy k ≥​ 0.2n =​ 4 GB, and error rate ε =​ 10−27 <​ 1/n2. With a total of 50 passes, the error 
rate can be as small as ε =​ 10−100. Most of the seed is used to sample a random Toeplitz hash h.).

Stage III with γ =​ 1 has been used before26–28 in randomness extraction from sources of guaranteed 
next-block-min-entropy. This guarantee means that every block, as a random variable, has enough min-entropy 
left even after revealing all the blocks preceding it, i.e., it presumes strong inter-block independence. Such a 
precondition restricts the applicability of Stage III since it appears too strong for common big sources, especially 
when there is an adversary. However, by introducing Stages I & II we can provably fulfill the precondition for a 
theoretically lower bounded constant γ. In practice, a larger (i.e., better than in theory) γ can be empirically found 
and validated.

Stage I equalizes entropy within each super-block and, subsequently, Stage II distributes entropy globally. After 
Stage II, the following property holds. Let … ∈Z Z( , , ) ({0, 1} )n b

b n
b1 /  denote the blocks of bits of the intermediate 

result at the end of Stage II. Next-block-min-entropy H∞[Zi|Zi−1, …​, Z1] = = … =… ∞ − −−
Z Z z Z zmin H [ , , ]z z i i i, , 1 1 1 1i1 1

 
is the min-entropy of the i-th block Zi conditioned on the worst choice of all the blocks preceding Zi. We show 
(Supplementary Information pp. 15–25) that for every i ∈​ {1, …​, bO},

… ≥ Ω∞ −Z Z Z bH [ , , ] ( ) (1)i i1 1

with probability (over the choice of the random seed) greater than 1 −​ ε/n, for =
ε( )b O log n

2 , γ =​ Ω(1) and 
bO =​ Ω(n/b). Therefore, Stage III extracts ε-close to uniform random bits.

To invoke the extractor, it is necessary to find an initial random seed and estimate the min-entropy rate κ of 
the source. The proposed method includes an empirical realization of a multi-source extractor to obtain 4 MB 
initial randomness from 144 audio samples each of 4 MB. We also propose and validate an empirical protocol that 
estimates both κ and γ simultaneously by combining RRB itself with standardized uniformity tests.

Finally, we note that the RRB extractor bears some superficial similarities to the Advanced Encryption 
Standard (AES) block cipher, which is an encryption scheme widely used in practice. That is, at a high level both 
schemes efficiently mix information, though they do so in very different ways, e.g., in AES this is done on a much 
more local scale, whereas we mix information globally. Moreover, unlike the RRB extractor that we propose, the 
AES block cipher cannot have provable guarantees without proving that P ≠​ NP.

Methods
The proposed method is validated in terms of efficiency and quality, measured by standard quality test suites, 
NIST29 and DIEHARD30. The results strongly support our new extractor construction on real-world samples. The 
empirical study compares multiple extraction methods on many real world data sets, and demonstrates that our 
extractor is the only one that works in practice on sufficiently large sources.

Our experiments are explained in more detail below and we summarize them here. Our samples range in 
size from 1.5 GB–20 GB and they are from 12 data categories: compressed/uncompressed text, video, images, 
audio, DNA sequenced data, and social network data. The empirical extraction is for ε =​ 10−20 and estimated 
min-entropy rate ranging from 1/64 to 1/2, with extraction time from 0.85 hours to 11.06 hours on a desktop PC 
(Fig. 3). The extracted outputs of our method pass all quality tests, whereas the before-extraction-datasets fail 
almost everywhere (Tables 1 and 2). The output quality of RRB is statistically identical to the uniform distribu-
tion. Such test results provide further evidence supporting that the extraction quality is close to the ideal uniform 
distribution, besides the necessary31 rigorous mathematical treatment.

Extraction method.  The complete empirical method consists of: (i) initial randomness generation, (ii) 
parameter estimation, and (iii) streaming extraction. Components (ii) and (iii) rely on initial randomness.

We first extract randomness from multiple independent sources without using any seed. Then, we use RRB to 
expand this initial randomness further.

Parameter estimation determines a suitable pair (κ, γ) of min-entropy rate κ =​ k/n and effectiveness factor 
γ = ( )b /O

n
b

.

Experimental set-up.  We empirically evaluate the quality and the efficiency of our RRB extractor.
Quality evaluation is performed on big samples from twelve semantic data categories: compressed/uncom-

pressed audio, video, images, text, DNA sequenced data, and social network data (for audio, video, and images 
the compression is lossy). The initial randomness used in our experiments consists of 9.375 ×​ 108 bits ≈​117 MB 
generated from 144 pieces of 4 MB compressed audio and one piece of 15 GB compressed video. The produced 
randomness is used for parameter estimation on samples ranging in size from 1 GB to 16 GB from each of the 12 
categories. The estimated κ and γ vary within [1/64, 1/2] and [1/32, 1/2] respectively, cross-validated (i.e., exclud-
ing previously used samples) on samples of size 1.5 GB–20 GB with error tolerance ε =​ 10−20. Final extraction 
quality is measured on all 12 categories by the standard NIST and DIEHARD batteries of statistical tests.

Operating system kernel-level measurements are taken for the running time and memory usage of RRB. These 
measurements are taken from RRB on input sizes 1 GB–20 GB, min-entropy rate κ ∈​ {1/4, 1/8}, and error toler-
ance ε ∈​ {10−10, 10−20}.

For comparison, we measure quality and efficiency for three of the most popular representatives of extractors. 
The quality of Local Hash and von Neumann extractors is evaluated on 12 GB of raw data (from the 12 categories) 
and on 12 GB adversarial synthetic data. The efficiency is measured for von the Neumann extractor, Local Hash, 
and Trevisan’s extractor. See the Supplementary Information for tables and figures showing this.
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Empirical initial randomness generation.  Seeded extraction, as in RRB, needs uniform random bits to 
start. All the randomness for the seeds in our experiments is obtained by the following method (which we call it 
randomness bootstrapping) in two phases: (i) obtain initial randomness ρ through (seedless) multiple-independent- 
source extraction, and (ii) use ρ for parameter estimation and run RRB to extract a longer string ρlong, 
ρ| | = ρ| −ˆ2long

/54 7, where ρ̂ is the part of ρ used as the seed of RRB during bootstrapping. By elementary  
information theory, ρlong can be used instead of a uniformly random string.

Phase (i) is not known to have a streaming implementation, which is a not an issue since it only extracts from 
small samples. Start with 144 statistically independent compressed audio samples ρ1, …​, ρ144: each sample is 4 MB 
of high-quality (320 Kbps) compressed recording (MPEG2-layer3). Taken together, the samples last 4.1 hours. 
These samples are generated privately – without malicious adversarial control – using different independent 
sound-settings and sources. Partition the samples into 16 groups, each consisting of 9 =​ 32 samples. Every ρi can 
be interpreted as a field element in GF[p], where p =​ 257885161 −​ 1 is the largest known Mersenne prime and 4 MB 
< plog2  bits. For the first group {ρ1, …​, ρ9}, compute ρ(1) =​ ρ′​ ⋅​ ρ′​′​ +​ ρ′​′​′​ where ρ′​ =​ ρ1 ⋅​ ρ2 +​ ρ3, ρ′​′​ =​ ρ4 ⋅​ ρ5 +​ ρ6, and 
ρ′​′​′​ =​ ρ7 ⋅​ ρ8 +​ ρ9; which is a two-level recursion. In the same way, compute ρ(2), …​, ρ(16) and finally let 
ρ =​ ρ(1) +​ …​ +​ ρ(16), with all operations in GF[p]. We call this the BIWZ method due to the authors32,33 who stud-
ied provable multi-source extraction based on the field operation x ⋅​ y +​ z.

Phase (ii) uses the 4 MB extracted by BIWZ out of which 3.99 MB are used in parameter estimation for com-
pressed video. The remaining 10 KB are used to run RRB on 15 GB compressed video, which is generated and 
compressed privately, i.e., without adversarial control. Our hypothesis is that the estimated parameters are valid 
for RRB, i.e., n bits of compressed video contain min-entropy n/2 that can be extracted by RRB with effective-
ness factor γ =​ 1/32. This hypothesis is verified experimentally. With the given seed and κ =​ 1/2, γ =​ 1/32, and 
ε =​ 10−100, RRB extracts the final 9.375 ×​ 108 random bits.

Empirical parameter estimation protocol.  There are two crucial parameters for RRB: the min-entropy 
rate κ and the effectiveness factor γ. In theory, γ is determined by κ, n, ε. In practice, better, empirically validated 
values are estimated simultaneously for κ and γ. This works because in addition to min-entropy, κ induces the 
next-block-min-entropy guarantee for a fraction of γ blocks.

For every semantic data category, the following protocol estimates a pair of (κ, γ).
First, obtain a bit sequence s of size 1 GB by concatenating sampled <​ 1 MB segments from the target data  

category. Then, compress s into s′​ using LZ7734 (s′​ =​ s if s is already compressed). Since the ideal compression has 
|s′​| equal to the Shannon entropy of s, the compression rate ′s

s
 is also an upper bound for the min-entropy rate. To 

obtain a lower bound for the min-entropy rate (required parameter for RRB), we start from κ′ = ′

|

s
s2

 and search 

inside [0, κ′​]. For min-entropy rate κ κ∈ ′ κ κ κ κ′ ′ ′ ′{ }, , , ,
2 4 8 16

 and effectiveness factor γ γ∈ ′ γ γ γ γ′ ′ ′ ′{ }, , , ,
2 4 8 16

, 
extract from s using RRB, with parameters κ, γ, and ε =​ 10−20 and seed from the initial randomness. Apply NIST 
tests on the extracted bits for every (κ, γ) pair. If the amount of extracted bits is insufficient for NIST tests, then 
start over with an s twice as long. We call a pair of (κ0, γ0) acceptable if NIST fails with frequency at most 0.25% for 
every run of RRB with parameters κ ≤​ κ0 and γ ≤​ γ0. This 0.25% threshold is conservatively set slightly below the 
expected failure probability of NIST on ideal random inputs, which is 0.27%. If (κ0, γ0) is a correctly estimated 
lower bound, then every estimate (κ, γ) with κ ≤​ κ0 and γ ≤​ γ0 is also a correct lower bound. Hence, the extraction 
with (κ, γ) should be random and pass the NIST tests. We choose the acceptable pair (if any) that maximizes the 
output length.

There is strong intuition in support of the correct operation of this protocol. First, the random sampling for s 
preserves with high probability the min-entropy rate35. Second, an extractor cannot extract almost-uniform ran-
domness if the source has min-entropy much lower than the estimated one. Finally, NIST tests exhibit a certain 
ability to detect non-uniformity. Verification of the estimated parameters is done by cross-validation.

Streaming realization of the RRB extractor.  The streaming extractor uses +d n2 log2  bits local mem-
ory and κ

 − + + 
ε

3 log log 2 log 2 log 3 1n
2 2 2 2  passes over two streams, for input length n, min-entropy rate κ, 

error tolerance ε and seed length d. RRB is also parametrized by the effectiveness factor γ as shown below.
Given n, ε, and the estimated κ, γ, we initially set k =​ κn, the output length γκ=m n1

2
, and the number of 

super-blocks =
κ ε

b log n9
2 22 . For convenience, n is padded to a power of 2, κ and γ are rounded down to an 

inverse power of 2, and b is rounded up to a power of 2. Hereafter, no further rounding is needed. Let σ1 and σ2 
denote two read/write streams. The input sample x ∈​ {0, 1}n is initially on σ1. Obtain a seed y of length 
= + +κ( )d b 1 log n

b2 2  from the initially generated randomness, and store it in local memory. We interpret y as 

= … ∈ × … −+κ { }y y y y( , , , ) {0, 1} 0, 1, 2, , 1b
b n

b

b

0 1
(1 )2 .

In Stage I, we partition the input into b super-blocks = …x x x x( , , , )b1 2 , where =xi
n
b

 for every 
∈ …{ }i 1, 2, , n

b
. RRB reads x from σ1 and writes …x y x y(shift( , ), , shift( , ))b b1 1  to σ2, where every 

= … 


( )x x x[1], ,i i i

n
b

, = + … 


 …( )x y x y x x x yshift( , ) [ 1], , , [1], , [ ]i i i i i

n
b i i i

 denotes the cyclic shift of xi with 
offset yi. This can be done with 4 passes.

In Stage II, we compute the re-bucketing of x yshift( , )1 1 , …​, x yshift( , ),b b  which is stored on σ2. The 
re-bucketing output is denoted by (z1, …​, zn/b), where every zj collects the j-th bit from all shifted super-blocks, 
i.e., = 



 …z x y j(shift( , ) , ,j 1 1  = + … +x y j x y j x y jshift( , )[ ]) ( [ ], , [ ])b b b b1 1 . The re-bucketing of b super-blocks 

can be done with ⌈ ⌉blog2  iterations, where every iteration reduces the number of super-blocks by a factor of two 
by interlacing (with the help of σ1) the first and second half of σ2. In particular, the first iteration merges every pair 
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of x yshift( , )i i  and + +x yshift( , )i b i b/2 /2  into a single super-block x y(shift( , )[1],i i  + +x yshift( , )[1]i b i b/2 /2 , …​, 



x yshift( , )i i

n
b

, 


+ + )x yshift( , )i b i b

n
b/2 /2

, which consists of n/b blocks (i.e. + +x y j x y j(shift( , )[ ], shift( , )[ ])i i i b i b/2 /2  
for j =​ 1, 2, …​, n/b) each of length 2. During the ⌈ ⌉blog2  many iterations, RRB spends ⌈ ⌉b3 log2  passes to compute 
(z1, …​, zn/b) and store it on σ1.

In the final stage, we output …h z h z( ( ), , ( ))b1 O
 to σ2, where h: {0, 1}b →​ {0, 1}κb/2 is a hash function realized 

through a Toeplitz matrix specified by y0 from the seed and bO =​ γn/b the number of blocks used for the output. 
This m-bit-long output can be locally extracted with 2 passes.

Therefore, RRB extracts m bits with κ+ = 
 − + + 

ε
⌈ ⌉b3 log 6 3 log log 2 log 2 log 3 1n

2 2 2 2 2  passes. The 
local memory size is dominated by Stage I, which requires +d n2 log2  bits to store the seed and two counters for 
head positions.

The above description is for the estimated (κ, γ). If there is theoretical knowledge for κ and the error tolerance 
ε is given, then RRB provably extracts m =​ Ω(n) bits that are ε-close to uniform with =

ε( )b O log n  and γ =​ Ω(1). 
For instance, RRB provably works for α≥ − α( )m n1 /64

2
3  and α=

ε
−b 64 log n3 , γ =​ α/4, where α =​ κ2/

(6 logκ−1) is a constant.

Empirical statistical tests.  Each statistical test measures one property of the uniform distribution by com-
puting a P-value, which on ideal random inputs is uniformly distributed in [0, 1]. For each NIST test, subse-
quences are derived from the input sequence and P-values are computed for each subsequence. A significance 
level α ∈​ [0.0001, 0.01] is chosen such that a subsequence passes the test whenever P-value ≥​ α and fails oth-
erwise. If we think that NIST is testing ideal random inputs, then the proportion of passing subsequences has 
expectation 1 −​ α, and the acceptable range of proportions is the confidence interval chosen within 3 standard 
deviations. Furthermore, a second-order P-value is calculated on the P-values of all subsequences via a χ2-test. 
An input passes one NIST test if (i) the input induces an acceptable proportion and (ii) the second-order 
P-value ≥​ 0.0001. An input passes one DIEHARD-test if P-value is in [α, 1 −​ α].

We compare the statistical behavior of bits produced by our method with ideal random bits. For ideal random 
bit-sequences, α is the ideal failure rate. Anything significantly lower or higher than this indicates non-uniform 
input. In our tests, we choose the largest suggested significance level α =​ 0.01; i.e., the hardest to pass the test. All 
tests on our extracted bits appear statistically identical to ideal randomness. See the Supplementary Information 
for details.

Experimental platform details.  The performance of the streaming RRB, von Neumann extractor, and 
Local Hash is measured on a desktop PC, with Intel Core i5 3.2 GHz CPU, 8 GB RAM, two 1 terabyte (TB) hard 
drives and kernel version Darwin 14.0.0. The performance of Trevisan’s extractor is measured on the same PC 
with the entire input and intermediate results stored in main memory. We use the following software platforms 
and libraries. TPIE36 is the C+​+​ library on top of which we implement all streaming algorithms – TPIE provides 
application-level streaming I/O interface to hard disks. For arbitrary precision integer and Galois field arithmetic 
we use GMP37 and FGFAL38. Mathematica39 is used for data processing, polynomial fitting, and plots. Source code 
is available upon request.

Conclusion.  We introduced the study of big source extraction, proposed a novel method for achieving this, 
and demonstrated its feasibility in theory and practice. Big source extraction has immediate gains and poses new 
challenges, while opening directions in the intersection of randomness extraction, data stream computation, 
mathematics of computation and statistics, and quantum information. We refer the reader to the Supplementary 
Information for details of proofs and experiments.
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