Figure 3
From: Heat production and error probability relation in Landauer reset at effective temperature

Produced heat and probability of success for the reset operation.
(a) Average heat produced during the reset operation as function of the lateral alignment Δx. For Δx < 0 the counter magnet is moved to the right and the 0 state (x < 0) is favorable. Accordingly, for Δx > 0 the 1 state is more favorable. Introducing an asymmetry on the potential Q decreases, which is accounted to the probability of success, Ps, that tends to decrease (Ps is encoded in the color map). (b) Success rate of the reset operation as function of lateral alignment. Solid violet circles represent the overall success rate while black and red symbols account for the success rate resetting to 0 and 1 state respectively. The maximum overall success rate is present when the system is almost symmetric, Δx ≈ 0. (c) Relation between success rate and heat dissipated. Red circles correspond to the resetting to 1 case while black ones correspond to the resetting to 0. (d) Dependence of Q with the protocol time duration, τp. As τp is increased the effects of frictional phenomena becomes negligible and the produced heat should approach the thermodynamic limit. However, for large τp the reset operation fails giving a wrong logic output. In these cases, where the error probability is high, the produced heat is clearly below the Landauer limit. Inset shows the obtained relation between error probability (1 − Ps) and produced heat. The data are compatible with the minimum energy required for a given error probability as predicted by Eq. 1, represented by dashed line.