Figure 4
From: 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

Major metabolic pathways are responsible for changes in the natural 13C and 15N abundance in cancerous cultured cells.
Glutamine (Gln) is a major N and C source from which N is removed via hydrolysis (glutaminase ❶) and the urea cycle (❷). These reactions are both fractionating against 15N thereby yielding 15N-depleted urea and arginine (Arg). Therefore, build-up and recycling rather than excretion of Arg (dotted arrow) tend to deplete cancer cells of 15N. Cells are also 13C-enriched due to the fixation of bicarbonate by carbamoyl-phosphate (CP) synthesis (to feed the urea cycle ❸) and the anaplerotic pathway (❹), as well as a lower 13C content in non-structural lipids (dotted arrow). Lipids that are 13C-depleted come from the natural 13C-depletion in acetyl-CoA (Ac-CoA) (inherited from naturally 13C-depleted C-atom positions in glucose) and the isotope effect of pyruvate dehydrogenase45,46 (❺). Amine acceptors are denoted as ‘A’ and oxaloacetate (OAA) converted to aspartate (Asp) is provided as an example. 2OG, 2-oxoglutarate; Pyr, pyruvate; Lact, lactate. The potential contribution of respiration (CO2 loss) and lactate excretion to the natural 13C-abundance is described in Supplementary Table S4.