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Ultrastable glasses portray similar
behaviour to ordinary glasses at
high pressure
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* Pressure experiments provide a unique opportunity to unravel new insights into glass-forming liquids

by exploring its effect on the dynamics of viscous liquids and on the evolution of the glass transition
temperature. Here we compare the pressure dependence of the onset of devitrification, T,,, between
two molecular glasses prepared from the same material but with extremely different ambient-pressure
kinetic and thermodynamic stabilities. Our data clearly reveal that, while both glasses exhibit different
dT,,./dP values at low pressures, they evolve towards closer calorimetric devitrification temperature and
pressure dependence as pressure increases. We tentatively interpret these results from the different
densities of the starting materials at room temperature and pressure. Our data shows that at the probed
pressures, the relaxation time of the glass into the supercooled liquid is determined by temperature and
pressure similarly to the behaviour of liquids, but using stability-dependent parameters.

Glasses constitute one of the most intriguing materials in condensed-matter'. Having a liquid-like disordered
structure they behave mechanically as solids. Glasses are typically formed by cooling the liquid at a rate that
overcomes the crystallization threat. One of the main features of glasses is the glass transition temperature, T,
. which characterizes the reversible transformation between the metastable supercooled liquid (SCL) state and
: the non-equilibrium amorphous solid-like material. The heat capacity of the glass is lower than that of the liquid
and, upon heating, the jump in heat capacity marks the onset temperature of devitrification, T,,. Its value strongly
depends on the previous thermal history of the glass and on the heating rate that follows a predefined cooling
procedure. Another characteristic feature of glasses is that they age if stored below the glass transition tempera-
ture, T,, for long periods of time?. Aging produces glasses with enhanced stability. The stability of a glass can be
established by means of its limiting fictive temperature (Ty’), i.e. the temperature at which the glass would be in
equilibrium with its own liquid. While the glass transition temperature can only be accessed by cooling from the
liquid state, the limiting fictive temperature is a property of the glass. The enthalpic T¢’ is obtained by integration
of the normalized heat capacity curve that is measured during a calorimetric cooling scan or during a calorimetric
heating scan starting from a given glassy state. Improving the glass stability by aging is a rather inefficient process
due to the exponential increase of the relaxation time (or viscosity) below the glass transition temperature.
A breakthrough in the field was the recent discovery that vapour-deposition can produce glasses that rival in
. stability with ambers naturally aged for millions of years®. Those glasses, dubbed ultrastable glasses (UG), are
. typically grown at temperatures around 0.85 T, where T, stands for the conventional glass (CG) transition
. temperature measured when the liquid is cooled at 10 K/min*-*. Besides the enhanced kinetic and thermodynamic
stability, vapour-deposited stable glasses have been shown to exhibit striking properties with respect to a conven-
tional glass obtained from the liquid. Among them, higher densities and higher sound velocities which imply
higher modulus®'?, surface-initiated transformation mechanism into the supercooled liquid in thin films!!-14,
absence of TLS (tunnelling two-level systems) in Indomethacin (IMC) at cryogenic temperatures'> and lower
heat capacities and thermal expansion coefficients’®. In particular, ultrastable IMC glasses, one of the archetypical
UG’s**, have a higher density by about 1.2% and a lower heat capacity of the glass by about 4%"”.
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While the properties of the glass transition temperature have been deeply studied as a function of temperature
by calorimetry in many different glasses, the pressure dependence of the calorimetric glass transition is a subject
relatively little explored'®. The main reason can be attributed to experimental difficulties, in relation to applying
high pressures in calorimetric experiments. On the contrary, dielectric or Pressure-Volume-Temperature (PVT)
measurements are more abundant and permit to broadly infer several tendencies with respect to molecular inter-
actions'™?. For instance, it has been found that glasses with strong molecular interaction of hydrogen bonding
type, systematically show lower values of dT,/dP compared to glasses dominated by van der Waals forces'®*'-*,
Another universal feature of glasses is that over a sufficiently large pressure range the pressure dependence of T,
is non-linear, i.e. the effect of pressure on temperature weakens when pressure increases and can be adjusted with
the empirical Andersson-Andersson equation®,

1/ky
K
T, = ;{1[1 + —ZP]
K3 (1)
where £, K, and k5 are empirical constants. Davies and Jones derived, based on the Ehrenfest equations, two
expressions for dT/dP in the liquid state evaluated at T,*. One of these expressions has been found to describe a

large range of materials®*:

dT B Tg v Aa _ Tg BT (Oél,'q*agla:s)
dp T, ACP (Cpliq - CPgla:s) (2)
where Aa and AC, refer to the difference in isobaric expansivity and heat capacity at T,, between the liquid and

its corresponding glass, and v is the molar volume at T,. We are not aware of previous studies that analyse the
pressure dependence of aged glasses over a wide range of stabilities.

In a previous work, we developed an empirical model that could simultaneously describe the relaxation time
of the liquid and of glasses of different stability®®. The model was built with data taken at ambient pressure and
therefore only depends on temperature and density. What would be the effect of pressure on glasses of different
stability? Can we explain the new data measured as a function of pressure introducing a density dependence on
pressure? We present in this work measurements of the devitrification temperature of ultrastable and conven-
tional IMC glasses as a function of pressure. We also propose a tentative extension of our previous empirical
model that aims to describe the relaxation dynamics of the system as a function of temperature and pressure by
considering the dependence of density on these variables.

Results

Evolution of the onset of devitrification as a function of pressure. Two sets of Indomethacin
samples, 20-40 pm thick UGs with Ty’ = 280K, and CGs obtained by cooling the liquid at 2-10 K/min, with
Ty = 315K, were temperature-scanned at pressures ranging up to 300 MPa in a home-made high-pressure dif-
ferential thermal analyser (HP-DTA). The values of T at ambient pressure were determined from differential
scanning calorimetry (DSC) measurements, as detailed in the methods section. The calorimetric curves obtained
at different pressures, for both ultrastable and conventional glasses, are shown in Fig. 1. It is apparent for both
glasses how the onset of devitrification shifts to higher temperatures as pressure increases.

Besides possible pressure effects, the shape and the smaller overshoot of the DTA signal at the onset of devit-
rification, T,,, for pressures above 0.1 MPa are due to the lack of sensitivity of the HP-DTA setup, precluding a
proper evaluation of the limiting fictive temperature as a function of pressure. Therefore, we will concentrate the
analysis on the evolution of T, as a function of pressure for both types of glasses (Fig. 2). We also note that onset
temperatures obtained for CGs produced by cooling the liquid at normal pressure and then pressurizing the glass
before carrying on the temperature scan or, alternatively, obtained by cooling the liquid at high pressure, were the
same within the experimental uncertainty of our HP-DTA setup. The observed reversibility between temperature
and pressure does not necessarily hold for all glasses. While an increase of pressure in the conventional IMC glass
or in the supercooled state induces a similar dynamic response, an increase of pressure in an ultrastable glass may
have a different response. Therefore, if one could obtain a highly stable (aged) glass by cooling from the super-
cooled liquid, a change of pressure in the glassy state and a change of pressure in the liquid state, followed by a
decrease of temperature could yield different final glassy systems.

The T,, vs. pressure data have been fitted using equation (1) (dashed lines in Fig. 2). For the CG (dT,,/dP)pm
evaluated at P =0.1 MPa yields a value of 280 & 22 K/GPa. The CG was produced and measured at the same cool-
ing/heating rate around 2 K/min. Therefore, the devitrification temperature evaluated on heating, T, and the
glass transition measured on cooling, Tg, coincide, i.e. T, &~ Tg ~Ty. From this we infer that dT,,/dP = dTg/ dp.
In fact, our experimental value is in relatively good agreement with previous experimental data reported by
Wojnarowska et al. using dielectric spectroscopy'®, who obtained 254 K/GPa (black points in Fig. 2). This value
suggests that van der Waals interactions dominate over hydrogen bonding, as typically found in polymers and
other van der Waals glass-formers'®?. Furthermore, the experimental value of (dT,/dP)p,, for the CG agrees
remarkably well (within 3%) with the one calculated from equation (2) using available data from literature for
glass and liquid specific volumes, thermal expansion coeflicients and heat capacity jump (Table 1). The slope of
the UG at P=0.1 MPa is 201 + 24 K/GPa, approximately 30% lower than the value obtained for the conventional
IMC glass. This may be an indication of the existence of a higher degree of strong intermolecular interactions,
such as hydrogen bonds, compared to conventional IMC, a tendency already reported in other works??%.

The direct comparison of the experimental data dT,,,/dP for the ultrastable glass with equation (2) can be ques-
tioned since the devitrification temperature measured on heating, T, for the UG is different to the glass transition
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Figure 1. HP-DTA signal as a function of temperature for different pressures, in MPa, as indicated in
both figures, measured on heating at 2 K/min. (a) Ultrastable IMC glass grown from the vapour phase ata
substrate temperature of 0.85T,. (b) Conventional glass formed by cooling the liquid at 2 K/min. The curves at
atmospheric pressure correspond to specific heat measured by DSC. The onset temperature of devitrification is
calculated as indicated by the red lines in the figure. The curves have been shifted vertically for clarity.
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Figure 2. Onset of devitrification temperature versus pressure for IMC ultrastable (blue) and conventional
(red) glasses, obtained from the calorimetric data shown in Fig. 1. The experimental data have been

fitted using equation (1) (dashed lines). The parameters are k, =314.85K, k, =4.68 and ;= 1124 for the
conventional glass and k, =330.31 K, k,=4.012 and k; = 1637 for the ultrastable glass. The black dots
correspond to data from ref. 19.
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Parameter UG CG

T,n [K] at P=0.1 MPa 332 311

Ty [K] at P=0.1 MPa 282 312

A« [1/K] (ref. 16) 4.30-107* 4.36:107*
AC, [J/molK] 150.74 (at 332K) 167.37 (at 282K) 138.23

Vi [em®/mol] (ref. 16) 269.62 273.12
(dT,,/dp)gerimental [1K/Gpq] 201 280, 254 (ref. 19)
(dT,,/dP)ePeimentl [1€/GPa] 133 148
(dT,,/dP)gieuated [1/Gpa] 255 271

Table 1. Experimental data and parameters used to test the validity of the Davies-Jones relation, equation (2).

temperature evaluated on cooling. Ultrastable glasses are somehow equivalent to glasses cooled at extremely
low cooling rates leading to T, > T, if the glass is reheated at conventional heating rates, i.e. 1-10 K/min.
In this sense, the experimental dT,,,/dP (201 K/GPa) and the value of dT,/dP calculated using equation (2) (255 K/GPa)
are not directly comparable. We could use the value of the limiting fictive temperature as a potential indicator
of the validity of equation (2) for the UG, since Ty’ can be considered very close to the T, of a hypothetical glass
obtained by cooling the liquid at the equivalent cooling rate?. In fact, using Ty in equation (2), dT/dPy_ 1y yields
a value of 210 GPa/K, much closer to the experimental value of dT,./dP at T,,. If we assume that fictive temper-
atures are affected by pressure in the same way as the glass transition temperature T, then it would be natural to
use the generalized limiting fictive temperature, as a trace of the validity of the Ehrenfest-type relationship>®3!.
Although we have no theoretical framework supporting the validity of this experimental observation, it seems
logical that the Ehrenfest relations can be applied at the point where the thermodynamic parameters of the glass
are equal to those of its corresponding equilibrium liquid.

Interestingly, extrapolation of the Andersson-Andersson function (equation (1)) to higher pressures seems
to yield a completely different scenario where the onsets of devitrification of both UG and CG, as well as dT,,,/
dP, approach each other as pressure increases. The dynamics and the thermodynamic state of vapour-deposited
UGs at ambient pressure are clearly different with respect to CGs, cooled from the liquid. The different onset
of the calorimetric glass transition temperature and the different value of the limiting fictive temperature at
P=0.1 MPa for UG and CG can be related to the change of the energy barriers between meta-basins and their
different energy position in the energy landscape respectively. At ambient pressure the difference in onset of
devitrification is 20 K, while at higher pressures it is significantly reduced. i.e., at high pressure both glasses
transform into the SCL at a similar temperature. Since during cooling/heating at 10 K/min the relaxation time
of the system equals approximately 100's at the transformation temperature'®, T, (CG) ~ T,,(UG) implic-
itly means that they share a common relaxation time at that temperature. This is a dramatic change, since
at ambient pressure the variation in relaxation times between ultrastable and conventional glasses of many
glass-formers is 4-5 orders of magnitude*”132,

Unfortunately, the experimental setup does not permit an accurate evaluation of the limiting fictive tem-
perature at high pressures and therefore precludes finding a direct relation between T and pressure. Most of
the prior measurements at high pressure have only access to dynamic properties of the system and the resulting
information is not directly connected to the thermodynamics of the glass itself. However, to test whether a pres-
sure change leads to irreversible changes in the structure of the glass we carried out an additional experiment. The
methodology consisted on exposing a UG glass to a pressure of 300 MPa at room temperature. We then returned
the glass to ambient pressure to subsequently perform a temperature scan. Figure 3 shows the calorimetric curves
for a pressurized and an unperturbed glass measured at ambient pressure in the pressure-DTA setup. As has been
mentioned before, the sensitivity of this setup is rather limited and the shape and area of the transition peaks are
not reproducible. Furthermore, the effects of pressure on the container crucible may yield variations in some fea-
tures of the transition peak. However, the onset of the transition is indeed accurate and, as can be seen in the fig-
ure, both glasses show the same onset. Moreover, when comparing these two curves to measurements performed
in a DSC (lower curves) on a UG glass, we can see how the onset of the transition is similar. This is by no means
obvious, since according to the values of compressibility reported in the literature’, a pressure of 300 MPa should
change the volume of the glass by ~4%.

Glass relaxation time as a function of pressure. It has been shown that van der Waals’ bonded liquids
and polymers obey power-law density scaling®-*, which means that the average relaxation time of the liquid is a
function of TvY, where v(T, P) = 1/p is the specific volume and ~ is a material constant. Casalini et al.** derived an
expression, T, (T, p) = F(TV'), considering that the relaxation time is governed by the entropy of the system, S,
as the Adam-Gibbs model proposes, but using a generalised equation for S_ that takes into account the influence
of both temperature and, also, pressure (or, equivalently, changes in specific volume). In particular,

T(T, v) = 75 ex [ir
VT TSP 3)
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Figure 3. Upper curves: HP-DTA curves, showing the differences between an ultrastable IMC glass
submitted to 300 MPa (black open symbols) and another without any pressure treatment (black solid
symbols), both of them measured at ambient pressure and at 2 K/min. Differences in the shape of the after-
compression signal are due to technical reasons. Lower curves: DSC scans from a conventional IMC glass,
cooled from the liquid at 2-10 K/min (red curve) and from an ultrastable glass (black curve), both measured at
ambient pressure. Vertical dashed lines indicate the position of the onset of devitrification.

1
where T, and ¢ are constants and C = lln (ﬂ) ¢ Tyvp with T, the conventional value of glass transition temper-
To

ature for IMC, 315K, and v, the specific volume of a CG at that temperature. ~ is a material-dependent constant,
that is generally identified with the Griineisen parameter, although the exact association is still under
discussion.

Although this description is generally applied to equilibrium liquids, we concluded in a previous work that
the relaxation times of glasses with different stability, as well as the supercooled liquid, can be described by equa-
tion (3) choosing the adequate stability-dependent parameters in the expression for v(T, T;")?. The proposed
model was applied to data obtained at ambient pressure, as were all the relations used for the parameters of the
model, such as the dependence of density on temperature. We suggest that the same model can be applied to the
data presented here by introducing in the mentioned equations the dependence of density on pressure.

According to the Murnaghan equation of state**, the bulk modulus of a system, Ky, can be expressed as a linear
function of pressure,

Ky = K, + K'P 4)

where K, is the bulk modulus at ambient pressure and K’ accounts for the linear variation of Ky with pressure. The
dependence of K on temperature is typically small and is considered as a small perturbation at very high temper-
atures. In the temperature range explored in this work, we impose the bulk modulus to be constant in relation to

temperature changes. Integrating the expression for the isothermal bulk modulus, K, = —V :%) , and using

T
equation 4, the specific volume of a system can be expressed as a function of pressure. The density, inverse of the
specific volume, takes the following form,

1
K’ K’

0

p(P) =p,|l +P

®)

where p, is the density at normal pressure. Since the temperature range probed in this work is relatively small,
we argue, as it was done when deriving the parameters used in equation (3), that the dependence of density on
temperature can be considered linear. Introducing the effect of pressure given by equation (5), we obtain

1
K\ \K

T,P) =
p( ) I+ OL(T - Tref) (6)

The variation of the thermal expansion coeflicient with pressure is related to the variation of the bulk modulus

with temperature as (‘;_‘;) = LZ (d%) . Since the dependence of K with temperature is small relative to Ky, we
T Kt
consider (‘j—‘;) to be negligible. We also note that we have considered no dependence of the thermal expansion
coeflicient on temperature.
We show in Fig. 4 reported values from Paluch and co-workers of relaxation time of supercooled IMC liquid
measured at different temperatures and pressures'®. We use these data to infer the values of K, and K’ for the
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Figure 4. Relaxation time of supercooled IMC liquid extracted from ref. 19 at (a) different temperatures and
(b) different pressures. Data are fitted using equation (3), introducing the dependence of density on pressure
described by equation (6). All parameters appearing in equation (3) are taken from ref. 26. Only the bulk
modulus has been allowed to adjust, yielding K (Pa) = 2.52 - 10° + 8.66P.

supercooled IMC liquid by fitting the curves using equations (3) and (6), where the values of 7, C, ¢, ~, cvand T,¢
have been extracted from ref. 26. The fit of the data yields K;=2.52-10°+ 8.66P for the bulk modulus of IMC
supercooled liquid.

We now focus on the relaxation time of glasses. In order to infer the value of K. (equation (4)) for IMC glasses of
different stability at ambient pressure, K,, we use the adiabatic bulk modulus, K, reported by Kearns et al. at ambient
pressure’. The adiabatic bulk modulus and the isothermal bulk modulus can be related by Kg = Kp(1 + ’\{GOLT)%,
where o is the thermal expansion coefficient and ~ is the Grunesein parameter. The Griineisen parameters for the
two glasses can be calculated from thermodynamic quantities, yielding v ;g = 0.79and~g ¢ = 0.63. We obtain
Kycg = 7.65 - 10° Pa and Koug = 8.74 - 10° Pa for the bulk modulus of CG and UG at atmospheric pressure,
respectively. Further details can be found in the Supplementary Information. We note that the use of a different value
of N does not alter the conclusions reached below, but only the absolute value of K.

Since this set of reported data has been measured at ambient pressure, no information regarding K’ can be
derived. Therefore, we will consider two alternative plausible scenarios. First, we consider that K’ remains unal-
tered after vitrification and, therefore, glasses and liquid have the same K’ value, K¢, = Kig = K{;g = 8.66. By
introducing the dependence of density on pressure in equation (3), and using the parameters found in ref. 26, we
can infer the relaxation time of both glasses as a function of temperature and pressure, T_(T, P). The temperature
at which T = 100 s is considered as the onset of devitrification'. We have plotted these temperatures in Fig. 5a for
the conventional and ultrastable IMC glass for different values of pressure (dashed lines in Fig. 5). We find that,
under the assumption of invariant K’, the onset of devitrification of conventional and ultrastable glasses do not
seem to approach at high pressures, contrary to our experimental results. As a second scenario, we assume that: i)
the bulk modulus of glass and liquid respond differently to pressure changes, and ii) that this response depends
on the stability of the glass. Considering the calculated values of K, we speculate that the value of K’ follows the
same tendency, i.e. the larger the thermodynamic stability of the glass the higher the values of K, and K’ are. In
particular, we find that we can qualitatively describe the experimental data shown in Fig. 2 by assuming K¢, = 5
and K{JG = 45 and using equations (3) and (6), as can be seen in Fig. 5b. We note that, according to this model,
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Figure 5. Comparison between experimental data of T, as a function of pressure for UG and CG (solid
symbols) and values predicted using equation (3) (dashed lines), taking (a) K’ constant (K’ = 8.66) and
(b) system-dependent value of K’ (K’CG =5, K{jG = 45). The values of K, used in the two plots are

K, g = 7.65 - 10°Paand K, yg = 8.74 - 10’ Pa, from the expression Kg = Kp(1 + ~ygaT).

the density of each glass is different, as well as its dependence with pressure. A similar result was deduced from
the application of the mean-field theory on glasses with different stability®.

Based on the above description we tentatively propose that the different curvature in Fig. 2 is due to the differ-
ent bulk modulus between the conventional and ultrastable glass. In particular, ultrastable glasses not only have
a higher bulk modulus than CG at ambient pressure, as was already reported’, but also this value is more affected
by pressure than the bulk modulus of the liquid or conventional glass.

Under this framework and considering the relationship between density and relaxation time expressed in
equation (3), the experimental data shown in Fig. 2 would depict a scenario in which relaxation dynamics of
glasses with very different stabilities at ambient pressure (AT = 35K), have similar relaxation dynamics at suf-
ficiently high pressures. A representation of this scenario is given in Fig. 6. In other words, high pressure would
make, from our experimental point of view, glasses of different stability practically undistinguishable. We remark
that by using equations (3-6) to describe the dynamics of ultrastable and conventional glasses, we are implicitly
assuming that the observed differences between these two systems mainly originate from their distinct density
values at atmospheric pressure and to the different density variation with the thermodynamic parameters, pres-
sure and temperature. From this point of view one could infer that an ultrastable glass behaves similarly with
pressure as a highly aged glass. Although more data is necessary in order to identify the specific dependence of
density with pressure, the analysis developed here permits us to tentatively extend the relaxation time model that
described the behaviour of a liquid and its glasses of different stability to include the influence of pressure. The
analysis presented in this work, would indicate that the relaxation time of glasses of different stability will con-
verge in the high pressure limit.

Conclusions

We have analysed the pressure dependence of the glass-to-liquid transformation in two glasses of indomethacin
that have extremely different values of limiting fictive temperature, ATy = 30 K. The two glasses show a differ-
ent dependence of the temperature of devitrification on pressure when evaluated between normal pressure and
300 MPa. This variation could be related to the differences in packing and molecular binding of the two glasses.
Interestingly, extrapolation to high pressures, shows that both glasses would share the same onset temperature
and the same (dT,,/dP)p,y,. Preliminary results show an invariance of the onset temperature of ultrastable glasses
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Figure 6. Scheme of the relaxation time of IMC SCL, CG and UG at ambient pressure (dashed lines) and at
300 MPa (solid lines) under the assumptions explained in the text. At 300 MPa, the difference between glasses
of very different stability almost vanishes.

before and after submitting the sample to high pressure, an indication that pressure would not irreversibly affect
the stability of the glass.

We extend the joint description of relaxation dynamics of glasses and liquids, including a particular pressure
dependence of the glass and liquid density through the bulk modulus of the system, K; =K, + K'P, where K, is the
isothermal bulk modulus at ambient pressure and K/ = 4Kt Under this assumption, we find that the measured
experimental data can be satisfactorily described considering a system-dependent value of K/, i.e. different glasses
and liquids have different values of K. While further experiments are required to corroborate this assumption, its
verification would imply that i) we can extend our relaxation time generalization, at least qualitatively, to varia-
tions of pressure by assuming a particular dependence of density on pressure and ii) the bulk modulus of glasses
with different stability and the liquid would be differently affected by pressure.

According to the unified description of glass dynamics, the relaxation time of glasses at high pressure con-
verges towards a unique value, in analogy to the effect of temperature on glasses with different stability, that
converges to a unique value of relaxation time at high temperatures.

Methods

Sample Preparation. Indomethacin (IMC) films with thickness ranging 20-40 pm were grown by
thermal evaporation within a UHV setup with base pressure of 5 x 10~ mbar. The growth rate was fixed to
0.124+0.02 nm/s and the deposition temperature was set to 266 K, 0.85 T, values that produces glasses with high
kinetic and thermodynamic stability. The films were grown onto aluminium foil to introduce sufficient mass
(100 mg) in the calorimetric vessels and enable subsequent high-pressure experiments. Conventional glasses of
IMC were prepared by cooling approximately 200 mg of melted IMC at a cooling rate of around 2 K/min directly
into the calorimetric vessel at ambient pressure. Crystalline IMC powder with purity higher than 99.9% was pur-
chased from Sigma-Aldrich and used without further purification.

Measurement Protocol. The heat capacity of IMC ultrastable and conventional glasses at ambient pressure
was measured by Differential Scanning Calorimetry (DSC) with a Perkin Elmer DSC?7. To calculate the limiting
fictive temperature of each type of glass we have followed the procedure described by Moynihan et al.?. Basically,
the limiting fictive temperature is determined by the intersection temperature between the enthalpy of the liquid
and the enthalpy of the glass, which are obtained by integrating the specific heat as a function of the temperature.

Experiments above ambient pressure were carried out with a home-made high-pressure differential thermal
analysis (HP-DTA) setup, described in detail elsewhere®. Essentially, the temperature of the irimo calorimeter
block is surrounded by an external resistance for temperature linear changes controlled by a Pt-100 thermometer
embedded in the block. Sample and reference temperature sensors are calibrated K-type (chromel-alumel) ther-
mocouples which are inserted into Sn cylindrical pans. The pressure into the calorimetric block was transmit-
ted by compressing a liquid and measured by calibrated Bourdon gauges with an accuracy better than 0.5 MPa.
Because pressure increases concomitantly with the temperature increase during the scan, the error in P, is
intrinsically linked to the error in T,,, which is mainly associated with the onset uncertainty. For the ultrastable
glass, the as-deposited samples together with the Al foil substrate were mixed with an inert perfluorinated liquid
(Galden® from Bioblock Scientifics, Illkirch, France) before sealing to guarantee the hydrostatic transmission of
pressure as well as to ascertain that in-cell volumes were free from residual air. DSC runs at ordinary pressure
(i.e., in standard aluminum pans) with mixtures of IMC and perfluorinated liquid were carried out to verify that
the latter was inert.

Afterwards, the produced glass (CG) is pressurized to each pressure value, in the range from 0.1 to 300 MPa.
After a stabilization time, a heating ramp at 2 K/min was initiated and the sample was heated from 300K to
400K in order to record the devitrification signal. Subsequently, the supercooled liquid is cooled back to ambient
temperature at the same pressure and at around 2 K/min, obtaining a new conventional glass. Alternatively, the
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supercooled liquid was depressurized and, afterwards, cooled down to ambient temperature to produce the glass.
As indicated in the main text, there is no appreciable difference in the onset of devitrification of the conventional
glass produced by either of the described procedures.

In the case of the UG, each measured sample was kept at ambient temperature while the pressure was set to

the working value, in the range from 0.1 to 300 MPa. After a stabilization time, a heating ramp at 2 K/min was
initiated and the sample was heated from 300K to 400 K. Each measurement was performed on a new sample.
After the first calorimetric scan the glass transforms into the supercooled liquid, which is subsequently cooled
at around 2 K/min and submitted to a second heating scan at a similar pressure to make certain that the now
conventional glass falls on the same curve obtained for the conventional glass samples prepared by melting IMC.
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