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Prediction of phosphothreonine 
sites in human proteins by fusing 
different features
Ya-Wei Zhao1, Hong-Yan Lai1, Hua Tang2, Wei Chen1,3 & Hao Lin1

Phosphorylation is one of the most important protein post-translation modifications. With the 
rapid development of high-throughput mass spectrometry, phosphorylation site data is rapidly 
accumulating, which provides us an opportunity to systematically investigate and predict 
phosphorylation in proteins. The phosphorylation of threonine is the addition of a phosphoryl 
group to its polar side chains group. In this work, we statistically analyzed the distribution of the 
different properties including position conservation, secondary structure, accessibility and some 
other physicochemical properties of the residues surrounding the phosphothreonine site and non-
phosphothreonine site. We found that the distributions of those features are non-symmetrical. Based 
on the distribution of properties, we developed a new model by using optimal window size strategy and 
feature selection technique. The cross-validated results show that the area under receiver operating 
characteristic curve reaches to 0.847, suggesting that our model may play a complementary role to 
other existing methods for predicting phosphothreonine site in proteins.

Reversible phosphorylation of protein is an important regulatory mechanism that occurs in both prokaryotic 
and eukaryotic organisms1,2. It is required in the majority of physiological and pathological processes, such 
as cell signaling transduction, neural activity, etc. In eukaryotic proteins, more than 30% of proteins are esti-
mated to undergo the reversible phosphorylation3. Phosphorylation results in a conformational change in the 
structure of these proteins in many enzymes and receptors and causes them to become activated or deactivated. 
Phosphorylation is a process that a phosphoryl group of adenosine triphosphate (ATP) is transferred to some spe-
cial amino acid residues, thereby generating adenosine diphosphate (ADP)4 as shown in Fig. 1. Phosphorylation 
usually occurs on serine (S), threonine (T) and tyrosine (Y) residues in eukaryotic proteins.

There are several experimental ways to discover protein phosphorylation sites. High throughput Mass 
Spectrometry (MS) is one of the most popular technique5. However, the experimental method is time-consuming 
and inefficient, thereby a series of excellent algorithms are used in phosphorylation site prediction, such as 
Artificial Neural Network (ANN)6 and Support Vector Machines (SVM)7 etc. Some excellent webserver for phos-
phorylation site predictors have been constructed based on these algorithms. For example, Ingrell et al.8 devel-
oped NetPhosYeast to predict yeast-specific phosphorylation site based on neural network method. Lin et al.9 
developed a rice-specific SVM predictor called Rice_Phospho by combining amino acid occurrence frequency 
with composition of k-spaced amino acid pairs. To identify kinase-specific phosphorylation site, Huang et al.10 
developed a kinase-specific phosphorylation site prediction tool called KinasePhos based on the profile hid-
den Markov model. Recently, a wonderful web server called GPS (Group-based phosphorylation Predicting and 
Scoring)11,12 was constructed to identify ~70 kinds of kinase-specific phosphorylation site with higher prediction 
robustness. Although there are many available predictors for phosphothreonine site prediction, two essential 
issues have remained elusive: amino acid sequence window size is a very important factor for pattern prediction, 
and the selection of optimal window size based on different types of properties may be different; the investigation 
of position conservation of residues around phosphothreonine may be invaluable for its prediction. However, 
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there are much less concerned with these views in previous work, and the predicted accuracy still has room to 
grow.

In this paper, we statistically analyzed the distribution of different properties including position conservation, 
secondary structure, accessibility and some physicochemical properties of the residues around the phospho-
threonine and non-phosphothreonine sites. Based on the statistical results, a new model was developed by using 
optimal window size strategy and feature selection technique. The prediction performance of the proposed model 
was measured by using auROC value.

Results and Discussion
In order to achieve an optimal model which can achieve the highest accuracy for predicting phosphothreonine 
site, it is of great significance to investigate the properties of residues surrounding phosphothreonine. Thus, we 
statistically analyzed the distribution of different properties including position conservation of residues, second-
ary structure content, accessibility and some physicochemical properties of the residues surrounding the phos-
phothreonine site and non-phosphothreonine site.

The position conservation.  The residues distribution surrounding threonine is an important factor on the 
phosphorylation of threonine. Thus, the position conservation of residues surrounding the threonine is likely to 
be a latent and be helpful information to identify phosphorylation sites. To verify our conjecture, the M(l) value 
(see Eq (1)) of each position was calculated based on positive and negative datasets, respectively (see Fig. 2). From 

Figure 1.  The schematic diagram of threonine phosphorylation. Enzyme-catalyzed proton transfer from the 
nucleophilic (—OH) group on threonine attacks the γ-phosphate (γ − −PO3

2 ) group on ATP, resulting in 
transfer of the phosphate group to threonine to form phosphothreonine and ADP, while this transfer is 
facilitated by magnesium (Mg2+) and threonine kinase. (—B:) indicates the enzyme base that initiates proton 
transfer.

Figure 2.  The position conservation M(l) value around phosphothreonine and non-phosphothreonine 
sites. 
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Fig. 2, we noticed that the M(l) value of each position in positive dataset is greater than that in negative sample 
dataset, indicating that these phosphothreonine sites prefer to some special residues.

Especially, we noticed that the M(l) value at +​1 site was significantly higher than other sites (Fig. 2), indicating 
that the first site downstream of threonine plays very important role for phosphorylation. Further analysis shows 
that the frequency of proline (P) is >​25% at the first site downstream of phosphothreonine. We also observed that 
another five sites (−​13, −​11, −​4, 3, 8) surrounding phosphothreonine site have a higher M(l) value compared 
with its neighboring sites. Furthermore, we found that leucine (L), lysine (K) and glycine (G) also have prefer-
ences appearing near the phosphothreonine sites, while tryptophan (W), cysteine (C) and histidine (H) present 
the opposite case around phosphothreonine sites. Thus, we used MEME (Multiple Em for Motif Elicitation)13 
to generate the consensus motifs around the phosphothreonine sites. As shown in Fig. 3, there are consensus 
sequences (left: DFG-[SA], E-value: 1.4e-0.09; right: Y-APEV[IL], E-value: 9.6e-045) in the left and right region 
around phosphothreonine sites, respectively.

The structural properties.  Generally, the phosphothreonine sites always located at the surface of proteins. 
Several studies14–16 showed that the phosphorlation sites occur in the loop region. Thus, we performed a serial of 
analysis to investigate the secondary structure content and accessibility information of the residues around the 
phosphothreonine site and non-phosphothreonine site. Results are shown in Fig. 4.

From Fig. 4a, we noticed that the residues around the phosphothreonine site do prefer to form loop structure. 
However, we cannot observe similar phenomena in non-phosphothreonine site (Fig. 4b). Moreover, we found 
that the closer the site gets to the phosphothreonine site, the greater the frequency of loop structure has and the 
lower the frequency of helix structure has. Figure 4c shows that the residues around the phosphothreonine site are 
inclined to have a higher accessibility than the residues around the non-phosphothreonine site. Furthermore, the 
distributions of secondary structure and accessibility are not strict symmetric flanking from phosphothreonine 
site (Fig. 4a,c), suggesting that different regions play different roles in phosphorylation of threonine.

The physicochemical properties.  Physicochemical properties of amino acid play a pivotal role in the 
protein-related research works for a long time17–19. Here, we statistically analyzed the distribution of nine phys-
icochemical properties of residues around the phosphothreonine and non-phosphothreonine site, as shown in 
Fig. 5. The values of the nine kinds of physicochemical properties have been provided in previous reference20. The 
results showed that, for the nine physicochemical properties, positive samples have larger fluctuation than neg-
ative samples. It also shows that the distributions of physicochemical properties flanking the phosphothreonine 
sites are not symmetrical. Especially, for four properties (rigidity, Flexibility, Pk1 and Pk2), +​1 site of phospho-
threonine are always dramatically different from other sites, which may be resulted from the phenomenon that 
+​1 site prefer to proline.

Discrimination phosphothreonine from non-phosphothreonine.  Based on the above analysis, we 
found that the distributions of different properties of residues are not only asymmetric surrounding phospho-
threonine, but also dramatically different between phosphothreonine and non-phosphothreonine. These results 
suggest that the information can be used to identify phosphothreonine.

Figure 3.  The MEME frequency plot to show consensus motifs of the left and right region around 
phosphothreonine sites. 

Figure 4.  The distribution of the secondary structure and mean of accessibility of each position 
surrounding the site. (a) The distribution of the second structure of the each position around the 
phosphothreonine site. (b) The distribution of the second structure of the each position around the non-
phosphothreonine site. (c) Mean of accessibility of the each position around positive and negative samples.
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One may notice that it is unbalance between positive datasets and negative datasets, which will bring biased 
estimate for a proposed method. Thus, we used clustering algorithm to generate 100 groups of positive sample 
and 100 groups of negative sample. Then, the first sample in each group are selected as training dataset. Thus, final 
benchmark dataset includes 100 positive samples and 100 negative samples.

A serial of calculation and analysis were performed to obtain the best prediction accuracy. We initially obtain 
the optimal window size of each set of features as follows. Firstly, four groups of feature sets namely position scoring 
function (F1), secondary structure and accessibility (F2), three kinds of physical properties (rigidity, flexibility and 
irreplaceability) (F3) and six kinds of chemical properties (hydrophobicity, hydrophilicity, mass, pk1, pk2 and pi)  
(F4) were used as features of phosphorylation site prediction, respectively. Secondly, we varied the window size 
from 10 residues to 30 residues and investigated the accuracy obtained by using SVM in jackknife test. The 
changes of auROC values with window size for four groups of features were plotted in Fig. 6. Results in Fig. 6 
show that the optimal window sizes are 12, 12, 24 and 18 residues, respectively for position scoring function, 
second structure and accessibility, three kinds of physical properties (rigidity, flexibility and irreplaceability) and 
six kinds of chemical properties (hydrophobicity, hydrophilicity, mass, pk1, pk2 and pi).

Based on the optimal window sizes for four groups of features, the sample can be formulated as a 216 dimen-
sions vector including 12 dimensions for position scoring function, 12 ×​ 2 =​ 24 dimensions for secondary 
structure and accessibility, 24 ×​ 3 =​ 72 dimensions for three kinds of physical properties (rigidity, flexibility and 
irreplaceability) and 18 ×​ 6 =​ 108 dimensions for six kinds of chemical properties (hydrophobicity, hydrophilicity, 
mass, pk1, pk2 and pi). In order to further improve the accuracy, we used mRMR program21 to exclude noise or 
redundant information. In view of this, we used the incremental feature selection (IFS) to determine the optimal 
number of feature as described below. The feature subset starts from a feature ranking first in the mRMR feature 
list. A new feature subset was composed when the second feature of this list was added. We repeated this process 
until all candidate features are added. In this study, we obtained 216 feature subsets. The prediction performance 
of each feature subsets was examined by using SVM with jackknife test on the benchmark dataset. We thus plotted 
a curve in a 2D Cartesian coordinate system with the number of features as its abscissa and the auROC as its ordi-
nate. The maximum auROC corresponds to the peak of the curve which can be easily observed. According to the 
curve shown in Fig. 7, the auROC reached its peak (auROC =​ 0.847) when the top ranked 49 features were used.

Conclusion
In this paper, we statistically analyzed the distribution of the different properties around the phosphothreonine 
and non-phosphothreonine sites, and found several important features which can contribute the identification of 

Figure 5.  The distribution of average value of residues’ different physicochemical properties in the each 
position surrounding the site. (a) Rigidity, (b) Flexibility, (c) Irreplaceability, (d) Hydrohobicity,  
(e) Hydrophilicity, (f) Mass, (g) pk1, (h) pk2, (i) pI.
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phosphothreonine. In preliminary test, we found that the structural and physicochemical properties do improve 
the recognition quality of phosphothreonine sites. In the future, we will collect more data and extract more fea-
tures to construct a predictive model with higher accuracy. Of course, the features can also be used in the predic-
tion of other protein post-translational modification.

Materials and Methods
Database.  The proteins with experimental-confirmed phosphothreonine in Homo sapiens were collected 
from the Universal Protein Resource (UniProt)22. Redundant sequences were removed by using CD-HIT23 pro-
gram with a sequence identity threshold of 30%. The proteins which have three dimension structure information 
in the Protein Data Bank (PDB)24 database were remained. The PDBfinder II database25 was used to obtain the 
corresponding secondary structure and accessibilities of these sequences. Finally, a total of 115 proteins contain-
ing phosphothreonine sites were obtained.

Subsequently, we extracted 151 sequences in protein sets. Each sequence is 31-residue long with the 
experimentally-confirmed phosphothreonines in the center. These sequences are deemed as the positive samples. 
Correspondingly, the other 31-mer sequences with the center threonine which is unphophorylated are selected as 
the negative datasets. Thus, we obtained a negative datasets which contains 2158 sequences.

Feature encoding and selection.  Position conservation.  In order to find potential sequence character-
istic of residues around phosphorylation sites (from −​15 to +​15), we investigated the residue preference at each 
site by using the conservation formulation defined as follows:

∑=
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l20
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Figure 6.  A plot for auROC values with window sizes for four groups of features: position scoring function 
(F1), secondary structure and accessibility (F2), three kinds of physical properties (rigidity, flexibility and 
irreplaceability) (F3) and six kinds of chemical properties (hydrophobicity, hydrophilicity, mass, pk1, pk2 
and pi) (F4). 

Figure 7.  The feature selection results. When the top 49 features were used to perform prediction, the auROC 
value reached its maximum peak (0.847).



www.nature.com/scientificreports/

6Scientific Reports | 6:34817 | DOI: 10.1038/srep34817

where Pi
l denotes the occurrence frequency of the ith amino acid at the lth position. p0 is the background frequency 

(here p0 =​ 0.05). It is obvious that the larger the M(l) value is, the stronger the conservation of the lth site is. 
M(l) =​ 0 represents a random distribution of the 20 residues at the lth position.

The position scoring function.  By aligning the training sequences of positive samples, the position weight matrix 
(PWM) was defined as the following:

=
+

+
P

n p N
N N (2)

xl
xl l

l l

0

where nxl denotes the real counts of residue x at the lth site. p0 denotes the background frequency of each amino 
acid in protein sequence (here p0 =​ 0.05). Nl denotes the total number of real counts at the lth site (the number of 
sequences). Then, for an arbitrary peptide fragment with 31 residues, the scoring of the lth site can be calculated by,

= × −F l P
p

M l M l( ) ln [ ( ) ( )]
(3)

xl
P N

0

where Mp(l) and MN(l) denote the position conservation at the lth site in the positive and negative samples, respec-
tively. The value of F(l) shows that the degree of sequence close to positive samples.

Feature selection.  To build an effective prediction model, feature selection is one of the most important steps26–28.  
Generally, not all features have equivalent contribution to the phosphorylation prediction system. Some of 
features make key contributions, whereas some others are less important. To analyze the features, a mutual 
information-based feature selection method, Minimal Redundancy Maximal Relevance (mRMR) method21, was 
employed in this study to pick out optimal features.

The mRMR is used to enhance the wrapper feature selection. mRMR can eventually generate two alterna-
tive features list, namely MaxRel feature list and mRMR feature list. The MaxRel feature list sorts the features 
according to their contribution to classification, whereas the mRMR feature list sorts the features by considering 
not only their contribution to classification but also the correlation between features29. In this study, we ranked 
features according to the mRMR feature list. For the detailed description of mRMR, please refer to Peng et al.’s 
work21.

Model construction.  Support vector machine.  Support vector machine (SVM) is a supervised learning 
model, which can construct a hyperplane in a high-dimensional space to classify two types of samples and has 
been widely used in bioinformatics30–32. Generally, a good separation is achieved by the hyperplane that has the 
largest distance to the nearest training-data point of any class (so-called functional margin). Thus, the larger the 
margin, the lower the generalization error of the classifier is. In this paper, we used LIBSVM 3.2033 to perform 
prediction, which can be freely downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm/. The radial basis 
function (RBF) kernel was selected as kernel function. For achieving the best model, the penalty constant C and 
the kernel width parameter γ were tuned in an optimization procedure using a grid search method, of which the 
search spaces for C and γ are [215, 2−5] and [2−5, 2−15] with steps of 2−1 and 2, respectively.

ROC curve.  The receiver operating characteristic curve (ROC curve) is a graphical plot to illustrate the per-
formance of a binary classifier system by plotting the true positive rate (TPR) against false positive rate (FPR) 
with various threshold settings34,35. The TPR, also called Sensitivity or recall in machine learning, measures the 
proportion of correctly predicted positive samples. The FPR, also known as the fall-out and can be calculated by 
1-Specificity, is the proportion of negative samples be predicted as positive samples. TPR and FPR are defined as 
follows:






= +
= +

TPR TP TP FN
FPR FP FP TN

/( )
/( ) (4)

where TP, FP, TN and FN denote true positive, false positive, true negative and false negative, respectively. The 
area under ROC curve (auROC) can better reflect the performance of a classifier. The auROC values ranged from 
0.5 to 1, and the larger auROC value is, the better performance is.
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