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Detecting the Curvature of de Sitter  
Universe with Two Entangled 
Atoms
Zehua Tian1, Jieci Wang2, Jiliang Jing2 & Andrzej Dragan1

Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on 
spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance 
Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We 
find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de 
Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized 
by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of 
a local inertial description of the two-atom system. However, the RCPI of the same setup embedded 
in a thermal bath in the Minkowski universe is temperature-independent and is always characterized 
by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum 
responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference 
between RCPI of two entangled atoms one can in principle distinguish these two universes.

Casimir effect1,2 is one of the striking consequences of the fluctuations present in the vacuum state of a quantum 
field. This effect and related phenomena has attracted great interest in many branches of fundamental phys-
ics, including cosmology, statistical mechanics, colloidal physics, as well as material science and nanophysics3–5. 
Experimental evidence of the Casimir and Casimir-Polder interactions, has been gathered both in the micro-
scopic and macroscopic level3,4 with an unprecedented level of accuracy. This has inpired researchers to study 
these interactions in more complicated scenarios involving finite temperatures6–9 and configurations out of equi-
librium10–16. The Casimir-Polder interaction has also been used as an effective mean to display the nonlocal prop-
erties of field correlations17,18, to probe entanglement19 and detect the Unruh effect20–22.

It is well known that the relativistic motion of the interacting systems, as well as the curvature of the back-
ground spacetime can modify the Casimir-Polder interaction. Thus, it is in principle imaginable to extract the 
information about gravity from the Casimir physics. Such a connection between relativistic motion and the 
Casimir-Polder force between two atoms, as well as the force between an atom and a conducting plate, has been 
demonstrated in refs 20–22. Furthermore, Casimir-Polder-like force of a single two-level atom has been analyzed 
in Schwarzschild background23 and de Sitter spacetime24 in order to probe the spacetime curvature.

De Sitter spacetime is a very simple curved background that enjoys the same degree of symmetry as the 
Minkowski spacetime, both having ten Killing vectors. More importantly, it is also a good model of our universe in 
the far past and the far future, as suggested by our current observations and the theory of inflation. It is known that 
a single particle interacting with a conformally coupled massless scalar field in the de Sitter invariant vacuum state 
behaves exactly the same way as the one coupled to thermal bath in Minkowski spacetime25–32. It is therefore diffi-
cult or impossible to distinguish the de Sitter spacetime from the Minkowski spacetime containing a thermal bath, 
with the use of a single locally coupled quantum system. In ref. 33 the authors proposed how to use entanglement 
present in the quantum fields to detect spacetime curvature and showed that using two local particle-detectors 
interacting with the field can achieve this goal. In the Minkowski spacetime with a quantum field in a thermal 
state the pair of detectors will be able to extract some entanglement that wouldn’t be present in the corresponding 
scenario involving de Sitter spacetime. Thus, the authors concluded that the two universes can be distinguished by 
their entangling power. This interesting issue has also been recently reanalyzed in refs 24 and 34–37.
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In this paper, we propose a new method of spacetime discrimination involving the resonance Casimir-Polder 
interaction, occuring when one or more atoms are in their excited states and an exchange of real photons between 
them takes place38,39. Our set-up is modeled as two entangled atoms being coupled to a massless scalar field. We 
compare a scenario, when the field is in the de Sitter-invariant vacuum and is conformally coupled with de Sitter spa-
cetime, with the scenario involving the Minkowski spacetime with a field in a thermal state. Our results show that the 
resonance interatomic interaction for the de Sitter spacetime case does depend on the spacetime curvature and certain 
features of RCPI could in principle be used to distinguish de Sitter universe from the thermal Minkowski spacetime.

Methods
We apply the open quantum system approach introduced by F. Benatti and R. Floreanini40 to obtain the effective 
Hamiltonian of the two atoms, and study the interatomic interaction with it. Here let us note that the approach 
applied in the current paper is different from that in refs 33, 41 and 42, where the window functions are chosen 
to modulate the interactions between the atoms and field such that the atoms remain causally disconnected, 
and their evolution can be regarded as unitary except for a finite duration when the interaction is switched on. 
In our paper, the atoms, interacting with a bath of fluctuating vacuum scalar field, are treated as an open quan-
tum system and that therefore evolve nonunitarily. By tracing over the field degrees of freedom we can derive 
the master equation that governs the atoms’ evolution. Then we are able to examine the dynamics of this open 
quantum system with the help of the master equation. Besides, our studies are confined in the frame of the 
two atoms which is regarded as the proper frame, and thus all the physical quantities defined in this frame are 
spacetime-independent. At this point, let us note that this approach has been extensively used to study the quan-
tum effect43,44, such as Hawking effect, and entanglement generation45 in curved spacetime.

Dynamic evolution of two atoms.  Consider two identical and mutually independent atoms that weakly 
interact with a quantized massless scalar field in its vacuum state. Each of the atoms has two internal energy levels, 
ω± 1

2 0, associated with the eigenstates |e〉​ (excited state) and |g〉​ (ground state), respectively. The corresponding 
Hamiltonian is of the form ω σ=α αHA

( ) 1
2 0 3

( ), where the superscript α labels the atom number: α ∈​ {1, 2}, and σ αi
( ) 

with i ∈​ {1, 2, 3} are Pauli matrices. The total Hamiltonian of the system has the following structure:

= + + +H H H H H , (1)A A F I
(1) (2)

where HF represents the free Hamiltonian of the field and the field-atom interaction term, HI, is assumed to be:

τ µ σ τ σ τ= Φ + ΦH ( ) [ (x ( )) (x ( ))], (2)I 2
(1)

1 2
(2)

2

where μ is the coupling constant that is considered to be small.
Initially, we assume no correlations between the atoms and the external field, therefore the total state of the system 

is of the form ρtot(0) =​ ρ(0) ⊗​ |0〉​〈​0|, with ρ(0) being the initial state of the two-atom system, and |0〉​ being the vacuum 
state of the scalar field. In the frame of atoms, the time evolution of the total system satisfies the von Neumann equation:

ρ τ

τ
τ ρ τ

∂

∂
= −i H

( )
[ ( ), ( )], (3)

tot
tot

where τ is the proper time of atoms. We will be interested in the time evolution of the two-atom system, thus 
by tracing over the field degrees of freedom, i.e., ρ(τ) =​ TrF[ρtot(τ)], we can derive the reduced dynamics of the 
two-atom system. The resulting equation in the weak-coupling limit has the Kossakowski-Lindblad form46–48:

ρ τ
τ

ρ τ ρ τ∂
∂

= − +i H L( ) [ , ( )] [ ( )], (4)eff

with
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α
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2
,
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ij i jeff

1

2
( )

, 1

2

, 1

3
( ) ( ) ( )

and

∑ ∑ρ σ ρσ σ σ ρ ρσ σ= 
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− − 
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α β
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= =
L C[ ] 1

2
2 ,

(6)i j
ij j i i j i j
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3
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where Heff is the effective Hamiltonian of the two-atom system. The elements of the matrices αβCij
( ) and αβHij

( ) are 
determined by the Fourier transforms of the field correlation functions:

τ τ τ τ− ′ = Φ Φ ′αβ
α βG x x( ) ( , ) ( , ) , (7)

( )

 λαβ ( )( )  and their Hilbert transforms λαβ ( )( ) , which are respectively given by:

 ∫λ τ τ= ∆ ∆αβ λ τ αβ

−∞

∞ ∆d e G( ) ( ), (8)
i( ) ( )

and
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π

ω ω
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with P being the principal value. Then the elements, αβHij
( ), in the effective Hamiltonian, Heff, can be written 

explicitly as:

δ δ δ δ= − −αβ αβ αβ αβH A iB A , (10)ij ij ijk k i j
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3
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The elements αβCij
( ) are given by the equation:

δ δ δ δ= − −αβ αβ αβ αβ∼∼ ∼C A iB A , (12)ij ij ijk k i j
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Results
Energy-level shifts of two atoms.  Our interest is the effective Hamiltonian of two atoms, Heff, from which 
we can study how the two mutually independent atoms interact with each other through the field medium. Let us 
note that this Hamiltonian contains two important parts, one is +H HA A

(1) (2), resulting from the internal energy of 
two isolated atoms, and another term given by:

∑ ∑ σ σ≡ −
α β

αβ α β

= =
H i H

2
,

(14)i j
ij i jLS

, 1

2

, 1

3
( ) ( ) ( )

is analogous to the Lamb shift of the two-atom system resulting from the interaction between the atoms and the 
external field. In the collective states representation, i.e., the ground state |G〉​ =​ |g1〉​|g2〉​, the upper state |E〉​ =​ |e1〉​|e2〉​, 
the symmetric state = +S e g g e( )1

2 1 2 1 2 , and the antisymmetric state = −A e g g e( )1
2 1 2 1 2  first 

introduced by Dicke49, the two-atom system behaves as a single four-level system with the above four eigenstates50. 
Thus, by calculating the average values of HLS on the corresponding eigenstates, one can obtain the energy-level shifts 
of the ground state, the upper state, the symmetric state and the antisymmetric state as:
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Let us note that expressions (15) are quite general and hold for any spacetime backgrounds. The parameters A 
and B given in Eq. (11) are relevant to the field correlation functions in Eq. (7), which are along the trajectories 
of atoms and depend on the spacetime background. Thus, it is expected that the relevant information about the 
spacetime geometry and motions of atoms is encoded in A and B. As a consequence, different types of spacetime 
could result in different energy-level shifts of the two-atom system. In the following, we will consider that for two 
static atoms in de Sitter spacetime and in thermal Minkowski spacetime. We are hoping to find the difference 
between these two cases, and thus distinguish these two spacetime with such difference.

Resonance Casimir-Polder interaction between two atoms in de Sitter spacetime.  We will be 
interested in the computation of the field correlation functions of the conformally coupled massless scalar field in 
de Sitter spacetime. This background is a solution of the Einstein equations with the cosmological constant Λ​, and 
it can be conveniently represented as the surface of the hyperboloid:
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α− − − − = −z z z z z , (16)0
2
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2

2
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4
2 2

embedded in the five dimensional Minkowski spacetime with the metric26:

= − − − −ds dz dz dz dz dz , (17)2
0
2
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2

2
2
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4
2

where α = Λ3/ . By applying the following parametrization:
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we can obtain the static de Sitter metric:

α α
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Obviously, there is a coordinate singularity at r =​ α where the so called cosmological horizon is. Note that in 
curved spacetime, a delicate issue arises of how to determine the vacuum state of the quantum field. Here we 
choose the de Sitter-invariant vacuum state as the state of the conformally coupled massless scalar field, since it is 
an analogous state to the Minkowski vacuum in flat spacetime, and it is considered to be a natural vacuum51. The 
corresponding Wightman function takes the form26,27:

π
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+G x x
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4
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4 4

2 and ε is an infinitesimal constant. We assume 
that the two static atoms we considered are held at the positions (r, θ, φ) and (r, θ′​, φ), respectively. To calculate 
the corresponding Wightman functions for these two spacetime points, we submit the trajectories of the atoms 
into Eqs (7) and (20), then we obtain:
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where we have used the definitions: κ α α α α= = − = −g r r1 /00
2 2 2 2 , and τ τ τ∆ = − ′ = ∆g t00  

= − ′g t t( )00  with τ being the proper time of the atom. Then, through the contour integral we can calculate the 
Fourier transforms of the field correlation functions shown in Eqs (21) and (22), which are given by:
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, and L =​ 2r sin(Δ​θ/2) is the usual Euclidean distance between the two 

points (r, θ, φ) and (r, θ′​, φ), i.e., the distance between the two static atoms in de Sitter spacetime. Consequently, 
using the results in Eqs (23) and (24) together with Eq. (9), it is found that the Hilbert transforms are given by:
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Plugging the Hilbert transforms into Eqs (10) and (11), we obtain:
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Let us now proceed with the study of the Casimir-Polder potential between the two atoms. According to 
Eqs (26) and (27), the terms αβHij  with α =​ β have no contribution to the interatomic interaction energy, since 
such terms are independent of the distance, L, between the two atoms. As a consequence, from the energy shifts 
of the ground state and the upper state cases given by Eq. (15), we can see that there is no interatomic interaction 
between the uncorrelated two atoms in the second-order perturbation theory. However, we find that for both 
symmetric and antisymmetric entangled states cases, there are terms αβHij  with α ≠​ β in the energy shifts of the 
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two atoms, meaning that the interatomic interactions definitely exist in such cases. For these two entangled state 
cases, the corresponding energy shifts are given by:

∫

∫

δ µ
π

ω ω
ω ω

ω
ω ω

ω

δ µ
π

ω ω
ω ω

ω
ω ω

ω
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+
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− .
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It is obvious that in Eq. (28) the term ∫ ω +ω
ω ω

ω
ω ω

∞

− +( )d
0 0 0

 is divergent. However, this divergence can be 
removed by taking a cutoff on the upper limit of the integral using Bethe’s Method52,53. At this point, let us note 
that the similar processes have been investigated in refs 54 and 55, where energy shift of a two-level atom has been 
studied in curved spacetime with the formalism developed by Dalibard, Dupont-Roc, and Cohen-Tannoudji56,57. 
Besides, it is needed to point out that this integral term also contains no L and thus it is insignificant when we take 
the derivative of it with respect to L to calculate the Casimir-Polder force between the two atoms. Due to that, we 
can rewrite the interatomic interaction for the symmetric and antisymmetric entangled states cases as:

∫

∫
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The integral in the equations above can be evaluated analytically, resulting in the following expressions:
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It can be seen that the results depend on the choice of the background metric through the parameter κ α= g00 . 
Therefore, the parameters of the de Sitter spacetime can in principle be probed using a pair of atoms interacting 
via the resonance Casimir-Polder interaction. It is interesting that the response of the single detector25,26,28 in 
terms of the spontaneous emission rate, energy-level shift, and geometric phase29–32 in de Sitter spacetime, shows 
that the detector seems as if it were immersed in a thermal bath with the temperature T =​ 1/2πκ. However, the 
resonance interatomic interactions here manifest non-thermally, carrying no signatures of thermal fluctuations.

In order to investigate the detailed behavior of the RCPI in de Sitter spacetime, let us notice that a characteris-
tic length scale in our problem is κ. For distances smaller than κ, it is possible to find a local inertial frame where 
all the laws of physics are the same with that in Minkowski spacetime. On the other hand, when the considered 
distances are larger than κ, the curvature of de Sitter spacetime may play a nontrivial role. For that reason we 
will focus on the RCPI for distances L between the detectors large enough for the spacetime curvature to have an 
effect. Alternatively we will also consider the RCPI for very small L, when the effect of spacetime curvature can be 
neglected and the results should be essentially the same, as obtained in Minkowski spacetime.

In the limit of L ≫​ κ, i.e., when the two-atom system is near the cosmological horizon, the RCPI given by 
Eq. (30) can be written as:
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and in the limit L ≪​ κ we have:
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We can see that in the flat spacetime scenario given by Eq. (32), the correction to the energy varies with the inter-
atomic distance as L−1, while in the de Sitter case, given by Eq. (31), the energy decreases as L−2. This shows that 
the resonance interatomic interactions bear a signature of spacetime curvature. We also point out that the 
pre-factor in Eq. (31) explicitly depends on the parameter κ associated with the temperature T =​ 1/2πκ that is felt 
by static observers in de Sitter spacetime. Let us note that the temperature T =​ 1/2πκ actually can be written as 
= +T T Tf a

2 2. Here =
πα

T f
1

2
 is the Gibbons-Hawking temperature, and Ta =​ a/2π is the Unruh temperature 
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with = −
α α

−( )a 1r r
1/2

2

2

2
 being the proper acceleration of static atom25,26,28–32. Let us note that both Tf and Ta are 

associated with the curvature of de Sitter spacetime, i.e., R =​ 12/α2 26. If the curvature R were zero, i.e., α →​ ∞​, 
both Tf and Ta vanish and then the RCPI is reduced to the inertial case shown in Eq. (32). However, when a =​ 0, 
i.e., the atoms are located at r =​ 0, the “kinematics” of the atoms has no contribution to the RCPI, but it is still 
related to the spacetime curvature due to the Gibbons-Hawking effect. Thus, in this regard, Eq. (31) implies that 
it is possible to single out metric effects associated to the curvature of de Sitter spacetime.

In order to compare the results given above with that corresponding to the thermal Minkowski spacetime 
scenario, we consider the RCPI between two static entangled atoms in Minkowski spacetime, coupled to a mass-
less scalar field in a thermal state characterized by the temperature T =​ 1/2πκ. For this case, the field correlation 
functions are given by:

∑
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(34)n
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2 2 2

where Δ​τ =​ t −​ t′ with t being the proper time of the static atoms in flat spacetime, and L =​ 2r sin(Δ​θ/2) denotes 
the distance between the two atoms. From these correlation functions we can carry out an analogous computation 
of the RCPI between the two static atoms in the thermal Minkowski spacetime, obtaining:
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4
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2

0

2
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Interestingly, these interatomic interactions do not depend on the temperature of the thermal bath, and they are 
identical to that of two inertial atoms shown in Eq. (32). We also stress that these interatomic interactions are 
quite different from the results in Eq. (30), which means the RCPI for the de Sitter spacetime case and that for the 
thermal Minkowski spacetime case behave differently. In particular, when the distance between two atoms L ≫​ κ, 
the curvature of de Sitter spacetime will strongly affect the nature of the field correlation functions G(αβ)(τ −​ τ′​), 
ultimately leading to the novel power law behavior, i.e., ~1/L2, of the RCPI between two atoms. However, the RCPI 
for the thermal Minkowski case behaves with power law 1/L. Because of the difference of the RCPI, correspond-
ingly, the resonance Casimir-Polder force between the atoms should behave quite differently with the change 
of distance L. Such force in de Sitter spacetime will decrease more quickly than that for the thermal Minkowski 
spacetime case as L increases. This quite different power law could be used as a criterion to determine the nature 
of these two universes. Therefore, two entangled atoms in principle can be used to discriminate between two alter-
native universes, generally speaking, indistinguishable with just a single atom: a thermal Minkowski spacetime 
or de Sitter spacetime.

Conclusions and Discussions
We used the open quantum system approach to derive the dynamics of the two-atom system, in particular, its 
effective Hamiltonian. This allows us to compute the RCPI between two entangled atoms. We calculated such 
RCPI in de Sitter-invariant vacuum and that in flat spacetime with field in the thermal state. We find that the 
former depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer and is 
characterized by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of 
a local inertial description of the two-atom system. However, the latter is temperature-independent and is always 
characterized by a 1/L power law decay. Therefore, although de Sitter spacetime and the thermal Minkowski spa-
cetime share a lot of the same properties and can not be distinguished by a single probe, by examining the RCPI 
between two entangled atoms it is in principle possible to discriminate these two spacetimes.

A similar task can be accomplished by examining the generation of entanglement33 between two initially 
uncorrelated static atoms. In such a scenario, the two detectors are required to be placed beyond each other’s cos-
mic horizons (in the de Sitter case) therefore the entanglement that is possible to extract is extraordinarily small33. 
On the other hand, our proposal does not involve vacuum entanglement extraction and uses feasible amounts of 
inter-atomic entanglement. Moreover, the requirement for the location of two atoms is much weaker. Our results 
showed that if spacetime is curved, i.e., in de Sitter universe, the RCPI is characterized by a 1/L2 power law decay 
when L ≫​ κ, while this interaction is always proportional to 1/L in flat spacetime, no matter whether the field state 
is thermal or not. In this regard, the criterion proposed in this work seems to be more practical.
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