SCIENTIFIC REPLIRTS

A Nonparametric Regression
Approach to Control for Population
‘Stratification in Rare Variant
s Association Studies

Published: 18 November 2016 Qiuying Sha, Kui Zhang & Shuanglin Zhang

Recently, there is increasing interest to detect associations between rare variants and complex traits.
Rare variant association studies usually need large sample sizes due to the rarity of the variants,

and large sample sizes typically require combining information from different geographic locations
within and across countries. Although several statistical methods have been developed to control for
population stratification in common variant association studies, these methods are not necessarily
controlling for population stratification in rare variant association studies. Thus, new statistical
methods that can control for population stratification in rare variant association studies are needed. In
this article, we propose a principal component based nonparametric regression (PC-nonp) approach to
control for population stratification in rare variant association studies. Our simulations show that the
proposed PC-nonp can control for population stratification well in all scenarios, while existing methods
cannot control for population stratification at least in some scenarios. Simulations also show that
PC-nonp’s robustness to population stratification will not reduce power. Furthermore, we illustrate
our proposed method by using whole genome sequencing data from genetic analysis workshop 18
(GAW18).

Recently, there is increasing interest to detect associations between rare variants and complex traits. The variant
by variant methods used to detect associations of common variants may not be optimal for detecting associations
of rare variants due to allelic heterogeneity as well as the extreme rarity of individual variants'. Many statistical
methods for testing the association of rare variants have been developed by using joint information of multiple
variants in a genomic region. These methods can be roughly divided into three groups: burden tests, quadratic
tests, and combined tests.

Burden tests'® collapse rare variants in a genomic region into a single burden variable and then regress the
phenotype on the burden variable to test for the cumulative effects of rare variants in the region®. Burden tests
implicitly assume that all rare variants are causal and directions of effects are all the same. Quadratic tests include
tests with statistics of quadratic form of score vector’~? and also adaptive weighting methods!'*-!?. Quadratic tests
are robust to directions of effects of causal variants and are less affected by neutral variants than burden tests do.
If most of the rare variants are causal and directions of effects of causal variants are all the same, burden tests can
outperform quadratic tests; otherwise, quadratic tests perform better. Combined tests®!'* combine information
from burden tests, quadratic tests, and possibly other tests aiming to have advantages of multiple tests and to
increase the robustness of tests.

All the aforementioned methods are population-based methods for unrelated individuals. It has been long
recognized that, for population-based association studies, population stratification can seriously confound asso-
ciation results'>!®. For rare variants this problem can be more serious, because the spectrum of rare variations
can be very different in different populations. In common variant association studies, several methods that use
a set of genomic markers genotyped in the same samples have been developed to control for population strat-
ification. These methods include genomic control (GC) approach!’-Y, principal component (PC) based linear
regression (PC-linear) approach?, and mixed linear model (MLM) approach?*> among others. GC approach
adjusts the ordinary chi-square test statistic X* to X*/\ and assumes X*/ X follows a chi-square distribution, where
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the inflation factor A can be estimated using genotypes at genomic markers. PC-linear approach summarizes the
genetic background or ancestry information through the PCs of genotypes at genomic markers. The PCs can
be further used to eliminate the effect resulting from population stratification through linear regressions. MLM
approach corrects for a wide range of sample structures by explicitly accounting for pairwise relatedness between
individuals.

Although several methods for controlling for population stratification have been developed for common var-
iants, it remains unclear whether these methods are equally effective for rare variants. Because rare variants have
typically arisen recently, they tend to show greater geographic clustering or more latent subpopulations than
common variants that are typically older. The more geographic clusters or latent subpopulations, the more diffi-
cult it will be to control for population stratification. Mathieson and McVean?® demonstrated that rare variants
can show a stratification that is systematically different from common variants. They also demonstrated that the
commonly used methods such as GC, PC-linear, and MLM to control for population stratification in common
variant associations are not necessarily controlling for population stratification in rare variant associations. Zhang
et al.** showed that the use of PCs calculated from common variants were effective to control for population
stratification in rare variant associations. Jiang et al.?® also found that the PC based methods performed quite well
while GC often yielded lower power. Note that both studies of Zhang et al.** and Jiang et al.?* did not explicitly
model the spatial structure of populations in their simulation studies. Zhang et al.* used two continental groups
from the 1000 Genomes Project with six and four subpopulation groups, respectively. Jiang et al.?* simulated
data with two populations. Lissgarten et al.? reported that FaST-LMM Select (a MLM approach) could control
for population stratification when samples were from spatially structured populations. However, their approach
reduced power substantially when causal rare variants are spatially clustered?®?’.

In this article, we propose a PC based nonparametric regression (PC-nonp) approach to control for popula-
tion stratification in rare variant association studies. PC-nonp adjusts population effects of both trait values and
genotypes at candidate loci for PCs of genotypes at genomic markers by applying nonparametric regressions. We
use extensive simulation studies to evaluate the performance of the proposed method PC-nonp and compare the
performance of PC-nonp with that of GC and PC-linear developed for common variants and recently proposed
biased urn permutation test (BiasePerm)®® developed for rare variants. Simulation results show that PC-nonp can
control for population stratification well in all scenarios while GC, PC-linear, and BiasedPerm cannot control for
population stratification at least in some scenarios. Results also show that PC-nonp’s robustness to population
stratification will not reduce power. Furthermore, we evaluate the performance of our approach by applying it to
the whole genome sequencing data from genetic analysis workshop 18 (GAW18) and find that only PC-nonp is
effective to control for population stratification.

Method
Consider a sample of n unrelated individuals. Suppose that each individual has been genotyped at a candidate
locus (single variant or multiple variants) and at L genomic markers. Let y;, x;, and p; denote the trait value, geno-
typic score at the candidate locus (weighted sum of genotypic scores if there are multiple variants), and the first k
PCs (rescaled to the interval [0, 1]) of genotypes at genomic markers of the i individual. The PCs of genotypes at
genomic markers are good summary measures of ancestry or genetic background. PC-linear is probably the most
popular method to control for population stratification. However, this method is based on linear combinations of
PCs. Furthermore, recently developed BiasePerm?® is based on linear combinations of PCs on logistic scale if we
use PCs as covariate vector®. The relationships between trait values and PCs can be highly nonlinear and popula-
tion effects cannot be corrected by simply using linear functions®. Figure 1 shows the relationships between trait
values and the first two PCs of genotypes at 10,000 genomic markers in two structured populations. This figure
shows that the relationships between trait values and PCs are highly nonlinear and the forms of the relationships
are different in different populations. When the relationships are highly nonlinear and the forms of relationships
are unknown, we should use more flexible regression methods rather than use linear regression. Nonparametric
regression is a very flexible regression method and it does not require the form of regression function.

In this article, we propose a PC based nonparametric regression (PC-nonp) approach that adjusts population
effects of both trait values and genotypes at candidate loci for PCs of genotypes at genomic markers by applying
nonparametric regressions. That is,

Nl(Pi) + & andxi = /’Lz(p,) + Ei> (1)

where £¢,(+) and p,(+) are regression functions with unknown forms and will be estimated using smoothing tech-
niques. Let y* and x;* be the residuals of the nonparametrlc regressions. We can consider y* and x;* as the trait
value and genotyplc score at the candidate locus of the i individual after adjusting for populatlon effects. We can
construct association tests based on the residuals.

Many methods have been developed to estimate the unknown regression function, including local linear
method®-3!, kernel smoothing method®>* and wavelet method***>. We propose to use kernel smoothing method.
Let K(-) be a kernel function with mode at 0. The kernel estimators of y,(p;) and p,(p;) are given by

Pj =P P —p;
() ()

(o) = ]X:IZI 1 (P P) and i, (p;) = jZ—:IZ?lK(Pl;pi), ()

respectively, where p, = (pjl, ... py) is the first k PCs for the j* individual, H= (h,, ..., k) is the smoothing param-

Pi=pi _ (PjPa Pj = Pix i P n P —p;
eter, and = ( o ) If we denote W(p) ( o )/lelK( I ), then
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Figure 1. The relationships between the first two PCs of genotypes at 10,000 genomic markers and trait
values. Genotypes at 10,000 genomic markers in the spatially structured populations are generated according

to simulation set 2 in simulation section. Genotypes at 10,000 genomic markers in a population with 10
subpopulations are generated according to simulation set 1 in simulation section. The trait values in the spatially
structured populations and in a population with 10 subpopulations are generated according to null distributions
(without random error) in simulation set 2 and simulation set 1, respectively.

fiy(p,) = X5 W) Y; and i, (p,) = W)X With these nonparametric estimators, the fitted values of
trait and the fitted values of genotypic scores at the candidate locus are given by j, = Y Wj(pi)yj and
%=X Wp)x; respectively. Intuitively, j. = Yo Wj(Pi))’j and &; = 37 ;| W(p,)x; are the weighted
mean of trait values and weighted mean of genotypic scores of those individuals whose genetic background is
similar to that of the i* individual. Thus, we can consider residuals ¥ =y, — y;and x} = x; — %, as the trait
value and genotypic score of the i* individual after adjusting for population stratification.

In this study, we use the quartic kernel®*,

By <y,
k(t) =116
0, ‘t‘ > 1. (3)
For computational consideration, we assume that i, =...=h,=h. Then,
_ k _
K Pj Pi _ H k pjx pis
H =i h

To test association between trait values and genotypes based on y* and x;*, we can use score test with test sta-
tistic Typre= U?/V, where U = 7 (3 — 7*)(x; — ) andV = % i = 70 (x; — %*)*. The statistic
Ticore asymptotically follows a chi-square distribution with one degree of freedom (df)*®. For rare variants, x; can
be a weighted combination? or collapsing'” of genotypes at multiple variants in a genomic region. Based on the
residuals of the nonparametric regression, we can construct other rare variant association tests such as CMC!,
SKAT?®, and TOW?. We will discuss this issue in more details later in the discussion section. In this study, we use
a single-variant test in which x; is the genotypic score of a single variant and a regional test in which x; is the
weighted combination of genotypes at the variants in a genomic region? to evaluate the performance of our pro-

posed method.
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We have so far assumed a given smoothing parameter in the kernel estimates. It is well known that choosing a
proper value for smoothing parameter  is critical to kernel estimates of regression functions®**’. We use a
method similar to that of Zhang et al.** to choose smoothing parameter h. This method is based on the genotypes
at a set of genomic markers. Suppose there are L genomic markers. We perform PC-nonp single-variant test for
all the L genomic markers and denote P, ..., P, as the associated P-values. If population stratification is well con-
trolled for, P-values P, ..., P; should follow a uniform distribution under the null hypothesis of no association.
Let F, be the empirical distribution function of the P-values Py, ..., P; and F be the uniform distribution function.
The Kolmogorov test statistic Kol (h) = max |F,(x) — F(x)|measures how close the distribution of the P-values
P,, ..., P, and the uniform distribution are. We propose to choose k" that minimizes the Kolmogorov test statistic,
ie.,

. .
h arg n:lm Kol (h) (4)
as the value of the smoothing parameter. h’ can be obtained by a simple grid search across a range of h. We divide
the interval [0, co)into subintervals 0 < h, < ... <hg_; < hg< co. Then, h* = arg min Kol (h,)- The computational

time to find h* increases linearly with S. However, h* needs to be calculated onl;l%ﬁge. We can use this #* to cal-
culate the residuals of the nonparametric regression for trait values and genotypes at each variant. Let k denote the
number of PCs used. In this study, we use h, =226+ _where s=1, ..., 30 and k= 10. It is worth noting that
the smoothing parameter & is chosen with the P-values of a single-variant test, whichever test is actually used in
testing associations.

Software. R code for implementing our proposed method is given at Shuanglin Zhang’s homepage http://
www.math.mtu.edu/~shuzhang/software.html. The R code includes three functions: PCA, choose_OPT_SMP,
and Resid_Nonp. PCA gives the first k principal components of genotypes at genomic markers. choose_ OPT_
SMP chooses the optimal value of smoothing parameter. Given the value of the smoothing parameter, Resid_
Nonp calculates the residuals of trait values and genotypes at a candidate region by applying nonparametric
regression for PCs of genotypes at genomic markers.

Comparison of Tests. We compare the performance of the proposed test with that of the following four
tests. (1) Uncorrected: this test is also based on the score test statistic TZ, . TU s the same as T}, but T is
based on the original trait values y; and genotypic scores x; instead of based on the residuals. (2) GC': GC divides
Tgm by an inflation factor Aand A = median(TY (1), ..., TV (L))/0.456, where T _(I) is the value of TV

score score score score
when TY, _is applied to the " genomic marker. (3) PC-linear®: this test is the same as PC-nonp but PC-linear is
based on the residuals of linear regression instead of based on the residuals of nonparametric regression. (4) The
biased urn permutation test (BiasedPerm)?: in this permutation procedure, the odds of a subject being selected
as a case are equal to his or her odds of disease conditional on confounder variables. In this study, PC-linear,

PC-nonp, and BiasedPerm are based on the first 10 PCs of genotypes at the genomic markers.

Simulations. We consider two sets of simulations: populations with k, subpopulations and populations with
spatially structured populations. In each set of simulations, we consider both qualitative and quantitative traits. To
generate a qualitative disease affection status, we use a liability threshold model based on a continuous phenotype
(quantitative trait). An individual is defined to be affected if the individual’s phenotype is at least one standard
deviation larger than the phenotypic mean. This yields a prevalence of 16% for the simulated disease in the gen-
eral population. In the following, we describe how to generate genotypes and how to generate a quantitative trait
in the two sets of simulations.

Simulation Set 1: Populations with k, Subpopulations. This set of simulations is based on allele frequencies at
24,487 variants calculated from the empirical Mini-Exome genotype data provided by the genetic analysis work-
shop 17 (GAW17). The genotypes of GAW17 data set are extracted from the sequence alignment files provided by
the 1000 Genomes Project for their pilot3 study (http://www.1000genomes.org). GAW17 data contain genotypes
of 697 unrelated individuals at 24,487 variants. The distributions of MAF at rare variants (MAF < 0.01) and MAF
at common variants of 24,487 variants are given in Figure S1.

To generate genotypes of individuals in a population with k, subpopulations, we follow Price et al.%,
Ionita-Laza et al.*%, and Qin et al.**. For each variant, we randomly select a variant from 24,487 variants and take
the MAF at this variant as the ancestral population allele frequency p. Then, independently draw k, values
Py oo By, from a beta-distribution with parameters p(1 — F)/F, and (1 — p)(1 — F,,)/F,, where F, is the Wright’s
measure of population subdivision® (in this study, F,,=0.01). For each variant, we accept p , ..., p, asallele
frequencies for the k, subpopulations if kizf.‘i \p; > 0.002; weredraw p, ..., Py, otherwise. The MAF distribu-

tions at the rare variants (MAF < 0.01) and at the common variants for k,= 5 are given in Figure S1.
To evaluate type I error, we generate trait values independent of genotypes by using the model:

Yy =Mt g )

where y;; denotes the trait value of the j* individual in the i subpopulation, ; follows a standard normal distri-
bution, and y; is the population mean of the i subpopulation. In this study, if k, < 2, we set g, =0 and p, = p;
otherwise, weset y = --- = fgr =0 and Por = Py, = Ho where y1=>5 if ky = 20; otherwise y1 =2.
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To evaluate power, we consider #ny variants (possibly both rare and common variants) in a genomic region. We
randomly choose 7, from the n; variants as causal variants (in this study, n,= n;/2). For the j* individual in the
i subpopulation, let x;; denote the genotypic score of the j* individual in the i* subpopulation at the I causal
variant. We assume that all the n, causal variants have the same heritability such that rarer variants have larger
effects. Under this assumption, the disease model is given by

nC
Yy = My D Brte,
I=1
where 3 are constants and their values depend on the total heritability.

Simulation Set 2: Spatially Structured Populations. 'We generate genotypes and phenotypes under spatially struc-
tured populations using the methods similar to those of Mathieson and McVean®. Briefly, the space is divided
into K, x K, grid squares. Then, we generate genotypes by starting with a number of individuals and their loca-
tions on the grid. We work backward in time to generate random genealogical events. Each event is either a
coalescence of two lineages or a migration of a single lineage from one square to another. The relative rates of
coalescence and migration depend on the population-scaled migration rate M and the number and distribution
of lineages on the grid (see Supplement materials or Mathieson and McVean? for details).

To generate quantitative traits under null hypothesis, let ¢: |1, n| — |1, K,| x |1, K| be a function that maps
each individual to the grid square from which they originated. Then, we generate the trait value of the i individ-
ual by y;= (R, + €, where ¢(i) = (1, j) if the i* individual originates from grid square I, j; R;; is the nongenetic
risk in grid square [, j; €; is a standard normal random number; and 3 is a constant. We use the following three
models to determine the value of R;;. Model 0: no population stratification in which R;;=0 for all / and j. Model
1: a small and sharp spatial distribution in which R;;=1if [, <I<I,+ 3 and j, <j<j,+ 3 for [,=j, =6, or
20— ly=j,=6, or Iy= jg = 14; R;;= 0 otherwise. Model 2: a wide and smooth spatial distribution in which
gl’j = 0.4¢~ (710" +0=70)I18 for | — j) = 6. In this study, we use the following parameters: K, =20, M=0.01, and

=2.

Under alternative hypothesis, we assume that there are n variants in a genomic region. We randomly choose
n, from the ny variants as causal variants. For an individual, let x; denote the genotypic score at the I causal vari-
ant. Under the assumption that all the #, causal variants have the same heritability, the trait value for an individual
is generated by

y = iﬂzxz T Yo
past 0 @)

where y, is the trait value generated under null hypothesis.

Results

Existence of the minimum of Kolmogorov test statistic Kol(h). We first perform simulation stud-
ies to evaluate the existence of the minimum of Kolmogorov test statistic Kol(h). We generate trait values and
genotypes at 10,000 variants under simulation set 1 for ky=5 and k,= 10 and under simulation set 2 models 1
and 2. Under each of the four scenarios, we calculate Kol(h) for different values of h. The relationships between
Kol(h) and —log(h) under the four scenarios are given in Fig. 2. This figure shows that the curves of Kol(h)
under the four scenarios are all bowl shaped and thus have minimum. The histograms of 10,000 P-values of the
proposed test for different values of 4 are given in Figures S2-S5 for the four scenarios, respectively. From these
figures, we can see that when h is large, population effects are not adjusted enough and thus the number of small
P-values are more than expected; when h is small, population effects are over adjusted and thus the number of
large P-values are more than expected; when h minimizes Kol(h), the distribution of P-values is very close to the
uniform distribution.

Evaluate type | errorrates. We use 10,000 replicated samples to evaluate type I error rates. For BiasedPerm,
we use 5,000 permutations to evaluate P-values. For all other tests, we use asymptotic distributions to evaluate
P-values. For 10,000 replicated samples, the 95% confidence intervals (Cls) for type I error rates of nominal levels
0.01 and 0.001 are (0.008, 0.012) and (0.00037, 0.00163), respectively.

To evaluate type I error rates, we first want to see the performance of the asymptotic distributions we used. For
this purpose, we perform simulations under null hypothesis in a homogenous population (k,=1 in simulation
set 1) and in the case of no population stratification (model 0 in simulation set 2). Type I error rates are given in
Tables 1 and 2 for quantitative traits and qualitative traits, respectively. Table 1 shows that, for quantitative traits,
type I error rates of all the four tests in all the scenarios are within the corresponding 95% confidence intervals,
which indicates that the asymptotic distributions work very well. Table 2 shows that, for qualitative traits, most of
the type I error rates are within the corresponding 95% Cls and those of the type I error rates that are not in the
95% ClIs are very close to the corresponding 95% ClIs, which indicates that the asymptotic distributions approx-
imately work well.

Type I error rates under structured populations in simulation set 1 for ky=2, 10, 20 are given in Tables 3 and 4
for quantitative traits and qualitative traits, respectively. As shown by these two tables, Uncorrected has inflated
type I error rates in all the scenarios. GC cannot control for population stratification for quantitative traits when
ky=10 and 20 because most variants have very small correlation with the trait. PC-linear and BiasedPerm can-
not control for population stratification when k=20 because the linear combinations of the first 10 PCs cannot
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Figure 2. The relationships between —log(smoothing parameter k) and Kolmogorov test statistic Kol(h) in
four structured populations.

Single 0.01 0.01054 0.01104 0.01096 0.01106

A Homogenous Variant 0.001 0.00106 0.00124 0.0011 0.00114

Population 0.01 0.0103 0.01112 0.01078 0.01048
Regional

0.001 0.00086 0.00112 0.00088 0.00096

Single 0.01 0.0105 0.00984 0.01254 0.00994

No Population Variant 0.001 0.0008 0.00068 0.00112 0.00076

Stratification 0.01 0.00942 0.00974 0.00936 0.0096
Regional

0.001 0.00074 0.00078 0.00076 0.00072

Table 1. Type I error rates of four tests in a homogenous population and in the case of no population
stratification for quantitative traits. Note: “A homogenous population” means k,=1 in simulation set 1; “no
population stratification” means model 0 in simulation set 2.

discriminate 20 subpopulations. Only PC-nonp can control for population stratification in all simulation scenar-
ios. If we increase the number of PCs, PC-linear and BiasedPerm may control for population stratification when
koy=20. The problems to use PC-linear and BiasedPerm to control for population stratification are (1) we do not
know how many PCs should be used and (2) increasing the number of PCs may decrease the power.

Type I error rates under spatially structured populations in simulation set 2 for models 1 and 2 are given in
Tables 5 and 6 for quantitative traits and qualitative traits, respectively. These two tables show that Uncorrected
has inflated type I error rates in all the scenarios. GC cannot control for population stratification for single variant
test because most variants have very small correlation with the trait. PC-linear and BiasedPerm have inflated type
I error rates under model 1 because these two methods try to correct highly nonlinear relationships on the basis
of linear functions of relatedness. PC-nonp can control for population stratification well in all simulation scenar-
ios because nonparametric regressions can adapt any function, linear or nonlinear.

Power comparison. To evaluate if PC-nonp’s robustness to population stratification will reduce power, we
perform simulation studies to compare power using regional tests under ky=1 and k, =10 in simulation set 1
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Single 0.01 0.0131 0.0076 0.0129 0.01178

A Homogenous Variant 0.001 0.00168 0.00112 0.00182 0.00172

Population 0.01 0.00992 0.00958 0.00992 0.0121
Regional

0.001 0.00124 0.00116 0.00122 0.00162

Single 0.01 0.01082 0.0053 0.01 0.0079

No Population Variant 0.001 0.00169 0.0007 0.00162 0.0014

Stratification 0.01 0.0113 0.00904 0.01176 0.00926
Regional

0.001 0.00178 0.00138 0.00166 0.00134

Table 2. Type I error rates of four tests in a homogenous population and in the case of no population
stratification for qualitative traits. Note: “A homogenous population” means k,= 1 in simulation set 1; “no
population stratification” means model 0 in simulation set 2.

Single 0.01 0.1516 0.00414 | 001026 | 0.01038
) Variant 0.001 0.05998 0.00032 0.00108 0.001
0.01 0.258 0.0081 0.00995 0.00925
Regional
0.001 0.1489 0.0004 0.00115 0.00095
Single 0.01 0.0503 0.01498 | 0.01096 | 0.01068
10 Variant 0.001 0.01606 0.0026 0.0012 0.00108
0.01 0.0549 0.0101 0.0107 0.0102
Regional
0.001 0.0139 0.00085 0.0008 0.001
Single 0.01 0.04896 002602 | 004234 | 0.01004
2 Variant 0.001 0.0214 0.0102 0.01632 0.00082
0.01 0.0488 0.01285 0.0391 0.011
Regional
0.001 0.0137 0.00255 0.0096 0.00075

Table 3. Type I error rates of four tests based on simulation set 1 for quantitative traits.

Single 0.01 0.02914 0.00648 0.01124 0.0065 0.0107
) Variant 0.001 0.00592 0.00034 0.00094 0.00056 0.00094
0.01 0.04066 0.00924 0.01168 0.0103 0.01192
Regional
0.001 0.0093 0.0009 0.00144 0.001 0.00146
Single 0.01 0.0428 0.01106 | 0.0106 0.00672 0.0103
1 Variant 0.001 0.01172 0.00124 0.00162 0.00078 0.00138
0.01 0.04862 0.00984 0.0105 0.01034 0.01062
Regional
0.001 0.01174 0.00134 0.00128 0.0008 0.0012
Single 0.01 0.02022 0.01244 | 0.01734 0.02296 0.01072
20 Variant 0.001 0.00414 0.00138 0.00354 0.00458 0.00132
0.01 0.04014 0.01068 0.03468 0.02694 0.01034
Regional
0.001 0.00952 0.00172 0.00746 0.0051 0.00152

Table 4. Type I error rates of five tests based on simulation set 1 for qualitative traits.

and under models 0 and 2 in simulation set 2, in which all tests except Uncorrected can control for population
stratification well. Power comparisons under ky=1 and k= 10 in simulation set 1 are given in Fig. 3. This figure
shows that, when there is no population stratification (a homogenous population), all tests have very similar
powers. When there is population stratification (a structured population with 10 subpopulations), PC-nonp and
PC-linear are more powerful than Uncorrected and BiasedPerm, and GC has the lowest power. GC loses power
because it has a larger inflation factor when there is population stratification. BiasedPerm essentially performs
permutation within subpopulations and thus it will lose power when there are a large number of subpopula-
tions. Uncorrected loses power because, in the structured population with 10 subpopulations, different trait value
means in subpopulations weaken the association signal. PC-nonp and PC-linear do not lose power because, after
adjusted for population effects, it appears that PC-nonp and PC-linear perform association tests in a homogenous
population.
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Single 0.01 0.0207 0.0135 | 0.0228 0.0132
. Variant | 0 901 0.0042 0.0021 | 0.0048 0.0014
0.01 0.1256 0.0121 | 0.1171 0.0106
Regional
0.001 0.052 0.0024 | 0.0463 0.0008
Single 0.01 0.019 0.0139 | 0.011 0.0115
5 Variant | ¢ 01 0.0048 0.0026 | 0.0011 0.0011
0.01 0.0374 0.0128 | 0.0112 0.0082
Regional
0.001 0.0102 0.0009 |  0.0008 0.0006

Table 5. Type I error rates of four tests based on simulation set 2 for quantitative traits.

Single 0.01 0.0384 0.0128 0.0409 0.02564 0.007
) Variant 0.001 0.0132 0.0022 0.0151 0.00652 0.0005
0.01 0.0248 0.0095 0.0288 0.02752 0.0114
Regional
0.001 0.0056 0.0009 0.005 0.00584 0.0008
Single 0.01 0.0453 0.0174 0.0087 0.00514 0.0088
) Variant 0.001 0.0182 0.0048 0.0006 0.00032 0.001
0.01 0.0366 0.0115 0.0121 0.00684 0.0093
Regional
0.001 0.0078 0.0007 0.0016 0.00046 0.0012

Table 6. Type I error rates of five tests based on simulation set 2 for qualitative traits.

Homo: Quantitative Structured: Quantitative
3 . 3 .
= &4 g o
o o
o o
= —— Uncorrected =
— GC
—— PC-linear
o 4 —— PC-nonp o 4

T T T T T T T T
0.010 0.015 0.020 0.025 0.010 0.015 0.020 0.025

Heritability Heritability

Homo: Qualitative Structured: Qualitative

8 . 3 .
2 8 2 o
o o
o (o8 ——
Uncorrected _—
- —— GC :
—— PC-linear
—— BiasedPerm /////
EhN —o— PC-nonp ch
T T T T T T T T
0.010 0.015 0.020 0.025 0.010 0.015 0.020 0.025
Heritability Heritability

Figure 3. Power comparisons based on populations with k, subpopulations. “Homo” means that simulations
are based on a homogenous population (k, =1 in simulation set 1). “Structured” means that simulations are
based on a structured population with 10 subpopulations.
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0.4

T T T T T T T T
0.010 0.015 0.020 0.025 0.010 0.015 0.020 0.025

Heritability Heritability

No stratification: Qualitative Structured: Qualitative

—— Uncorrected
— GC

—— PC-linear S
— BiasedPerm
—o— PC-nonp

= =

T T
0.015 0.020 0.025 0.030 0.015 0.020 0.025 0.030

Heritability Heritability

power

0.6
L

power

0.4
L
o
0.4
L
o
\

Figure 4. Power comparisons based on spatially structured populations. “No stratification” means that trait
values have no relation with spatial position (model 0 in simulation set 1). “Structured” means that trait values
are generated according to spatially structured model 2.

Power comparisons under models 0 and 2 in simulation set 2 are given in Fig. 4. As shown by this fig-
ure, for quantitative traits, the pattern of power comparisons is very similar to that in Fig. 3. For qualitative
traits, Uncorrected is the most powerful one. The pattern of power comparisons among PC-nonp, PC-linear,
BiasedPerm, and GC is very similar to that in Fig. 3.

Analysis of GAW18 whole genome sequencing data set. The data set for GAW18 includes whole
genome sequencing (WGS) data of 959 individuals (464 directly sequenced and the rest imputed) from 20
Mexican American pedigrees from San Antonio, Texas. There are 21-76 individuals in each pedigree. Phenotype
data include sex, age, year of examination, systolic and diastolic blood pressure (SBP and DBP), use of antihyper-
tensive medications, and tobacco smoking at up to four time points.

Since Mexican American population is admixture population, association studies based on unrelated individ-
uals from this population may be subjected to bias due to population stratification. For our purpose, we extract
132 genetically unrelated individuals from the 20 pedigrees with phenotypes and WGS data and select SBP as the
trait of interest while take sex, age, use of antihypertensive medications, and tobacco smoking as covariates. For
WGS data, we only consider one chromosome (chromosome 17). Among the 132 unrelated individuals, there
are 404,032 SNPs on chromosome 17. Since the sample size is small, we only consider the 41,754 uncommon
SNPs with MAF between 0.02 and 0.05 instead of including rare SNPs. We randomly draw 10,000 SNPs from
the 41,754 SNPs without replacement and test association between the phenotype and each of the 10,000 SNPs
using each of the four tests: Uncorrected, GC, PC-linear, and PC-nonp. We repeat the drawing procedure 4 times
with re-drawing 10,000 SNPs from the 41,754 SNPs. Quantile-quantile plots of the observed —log,(P-values) of
the four tests and expected log,,(P-value) under the assumption of uniform distribution of P-values are given in
Fig. 5. All quantile-quantile plots are averaged over 4 draws in order to show the average effect. Since we randomly
draw 10,000 SNPs across chromosome 17, it is unlikely that there are a large number of SNPs in the 10,000 SNPs
associated with SBP. Therefore, if population stratification can be well controlled for, P-values should proximately
follow a uniform distribution. Figure 5 shows that only P-values of PC-nonp nearly follow a uniform distribution
while for all other tests, the number of small P-values is more than expected.

Discussion

With the development of next-generation sequencing technology, there is increasing interest to detect associ-
ations between rare variants and complex traits. Many statistical methods have been developed for detecting
rare variant associations. However, these methods may be subject to bias due to population stratification and, as

SCIENTIFIC REPORTS | 6:37444 | DOI: 10.1038/srep37444 9



www.nature.com/scientificreports/

—— Uncorrected
.1 — GC

—— PC-linear

—— PC-nonp

3
!

2
1

—log10(P-value)

T T T T T
0 1 2 3
Expected -log10(P-value)

Figure 5. Quantile-quantile plots of observed —log10(P-values) of four tests and expected —log10(P-value).
All quantile-quantile plots are averaged over 4 times replicated draws in order to show the average effect. Each
draw, we randomly choose 10,000 SNPs without overlap from the 41,754 uncommon SNPs with MAF between
0.02 and 0.05 on chromosome 17.

pointed out by Mathieson and McVean®, existing methods developed to control for stratification are not neces-
sarily effective in rare variant associations. Therefore, statistical methods that can control for population stratifica-
tion in rare variant association studies are needed. In this article, we propose the PC-nonp approach to control for
population stratification in rare variant association studies. To apply PC-nonp, we first calculate PCs of genotypes
at the genomic markers. Then, we use these PCs to adjust population effects of both trait values and genotypes at
a candidate locus by applying nonparametric regressions. Our simulations show that the proposed PC-nonp can
control for population stratification well in all scenarios while existing methods cannot control for population
stratification at least in some scenarios. Simulations also show that PC-nonp’s robustness to population stratifi-
cation will not reduce power. Applications to the GAW 18 whole genome sequencing data set also show that our
proposed method can control for population stratification better than existing methods.

Although we describe our proposed method using a single-variant test and a weighted sum regional test, our
method can be applied to most existing rare variant association tests such as CMC!, SKAT?, and TOWS, To apply
our method to SKAT and TOW, denote y; and x;,, as the trait value and genotypic score at the m" variant of the i*
individual. Let y* and x;;, denote the residuals of nonparametric regressions y;= u(p;) +€; and x;,, = p(p)) + Eio
wherei=1,...,nand m=1, ..., M. Based on the residuals y* and x;;,, the test statistics of both SKAT and TOW

>
> m

can be written as T = Z%zlgm, where U,, = o =76, = %) In TOW, vV, =50 (x5, — %*m)z

m

while, in SKAT, VL = Beta(MAF,; a,, a,) the beta distribution density function with pre-specified parameters

a, and a, evaluated at the sample MAF for the m" variant in the data. To apply our method to CMC, suppose that
M variants can be classified as S, groups of rare variants and S, individual variant sites. Define indicator variables
x(i=1,..,ms=1,...,S,) for all individuals and the S, groups of rare variants, where x;, = 1 if minor alleles at any
variant in the s* group of the i individual are present; x;, = 0 otherwise. Let S=S,+ S, and define x;
(s=1,...,S.) as the genotypic score of the i individual at the s” individual variant site. Let y* and x;; denote the
residuals of nonparametric regressions y;= p(p;) +¢; and x;, = p(p;) + €, wherei=1, ..., nands=1, ..., S. Based
on residuals y* and x7, we cannot use T? test because x;: are not 0 and 1. We can use a score test or the improved
score test®.

Zhang et al.*! proposed a semi-parametric test for association (SPTA) to control for population stratifica-
tion. SPTA models the relationship between trait values, genotypic scores at the candidate marker, and PCs of
genotypes at genomic markers through a semi-parametric model, where the exact form of relationship between
trait values and PCs is assumed unknown, but trait values have linear relationship with genotypic scores at the
candidate marker. Although SPTA and PC-nonp are equivalent for single-variant tests under quantitative traits,
SPTA is difficult to extend to regional rare variant association tests such as SKAT and TOW because it is designed
for single-variant tests.
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