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Timelike curves can increase 
entanglement with LOCC
Subhayan Roy Moulick & Prasanta K. Panigrahi

We study the nature of entanglement in presence of Deutschian closed timelike curves (D-CTCs) and 
open timelike curves (OTCs) and find that existence of such physical systems in nature would allow us to 
increase entanglement using local operations and classical communication (LOCC). This is otherwise in 
direct contradiction with the fundamental definition of entanglement. We study this problem from the 
perspective of Bell state discrimination, and show how D-CTCs and OTCs can unambiguously distinguish 
between four Bell states with LOCC, that is otherwise known to be impossible.

Entanglement and Closed Timelike Curves (CTC) are perhaps the most exclusive features in quantum mechanics 
and general theory of relativity (GTR) respectively. Interestingly, both theories, advocate nonlocality through 
them. While the existence of CTCs1 is still debated upon, there is no reason for them, to not exist according to 
GTR2,3. CTCs come as a solution to Einstein’s field equations, which is a classical theory itself. Seminal works due 
to Deutsch4, Lloyd et al.5, and Allen6 have successfully ported these solutions into the framework of quantum 
mechanics. The formulation due to Lloyd et al., through post-selected teleportation (P-CTCs) have been also 
experimentally verified7.

The existence of CTCs has been disturbing to some physicists, due to the paradoxes, like the grandfather par-
adox or the unproven theorem paradox, that arise due to them. Deutsch resolved such paradoxes by presenting 
a method for finding self-consistent solutions of CTC interactions. The Deutschian model of CTCs (D-CTCs) 
impose a boundary condition, in which the density operator of the CTC system that interacts with a chronology 
respecting (CR) system is the same, both before and after it enters the wormhole. Formally,

ρ ρ ρ ρ= Φ = ⊗ †Tr U U( ) ( ( ) ) (1)CTC CTC CR CR CTC

where ρCR is the density matrix for chronology-respecting system, ρCTC is the initial density matrix of the qubit 
traveling along the closed timelike curve, and U is the interaction unitary. Mathematically, this can be seen as 
nature finding a fixed point solution of the map, Φ​, that depends on the chronology respecting system4.

Although a complete theory of quantum gravity is yet to be formulated, quantum information theorists have 
been studying the implications of the existence of CTCs and the nature of information with CTC-assisted models 
of computation. Recent studies of CTC-assisted models of computation, show them to be extremely powerful 
and be able to carry out non-trivial tasks, such as distinguish between non-orthogonal states8,9, clone unknown 
quantum states10,11, be able to signal superluminally12 and find a solution of any problem in the computational 
class PSPACE efficiently, in polynomial time (PSPACE =​ P)13.

These results could be due to the nonlinearity in the Deutschian model, that in turn could be due to the inter-
actions between the past and the present. Another line of thought, as introduced by Pienaar et al. through Open 
Timelike Curves (OTCs)14 modeled the effects of such physical systems, where there was no interaction in the 
CTC, i.e. the Unitaries are Identity operators. Here, with entanglement between the qubits traveling along a time-
like curve and an external chronology-respecting system, the self consistency conditions become,

ρ ρ ρ ρ ρ= ⊗ = ⊗⊗ ⊗ ⊗Tr Tr( ) ( ) (2)OTC CR CR OTC CR OTC OTC CR OTC CR

where ρOTC⊗CR is a bipartite system, and one of the systems is sent through the OTC. It can be seen that the OTC 
systems acts as a decorrelator. This trivially also violates the No-Broadcasting theorem. It was recently shown 
by Yuan et al.15, that such systems, with entanglement between the qubits traveling along a timelike curve and 
an external chronology-respecting system, could as well replicate the benefits of closed timelike curves without 
breaking causality.
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Here, we turn our attention to understand the implications of existence of such physical theories of time travel 
on the nature of entanglement.

We begin by understanding the problem of Bell state discrimination and ask if it might be possible to distin-
guish between Bell states, using only local operations and classical communication (LOCC), given only a single 
copy of the state, from a set of four Bell States. We then try to understand its implications.

It is known, in the conventional model of quantum mechanics, it is possible to distinguish between any two 
Bell states using LOCC16, however it is impossible to deterministically discriminate between four or even three 
Bell states17. Here we take another look and study the problem of Bell state discrimination with the assumption of 
the existence of D-CTCs in nature.

Bell state discrimination with LOCC is defined as follows. Suppose a referee, Alice, prepares a single copy of a 
maximally entangled Bell state

ϕ ∈ Φ Φ Ψ Ψ+ − + −{ }, , ,AB R AB AB AB AB

where Φ = ±± ( 00 11 )1
2

 and Ψ = ±± ( 01 10 )1
2

, and gives one qubit to Anita (|ϕ〉​A) and one qubit 
to Babai (|ϕ〉​B), who are spatially separated and allowed only local operations and classical communication. Their 
(Anita and Babai’s) objective is to determine which state was given to them.

One strategy Anita and Babai can pick would be the following.
Anita prepares a (known) state |ψ〉​ =​ α|0〉​ +​ β|1〉​, such that α β< ≠ <0 1, and perform a Bell measurement 

on her (known) state and her part of the local entangled qubit, |ϕ〉​A, and classically communicates the measure-
ment outcomes to Babai. Depending on the Bell state Anita and Babai were sharing, the decomposition can be 
given as follows, for each of the four possible Bell states.

ψ ψ ψ ψ ψΦ = Φ + Φ + Ψ + Ψ




+ + − + −( ( ) ( ) ( )Z X ZX1
2 (3)A AB A B A B A B A B

ψ ψ ψ ψ ψΦ = Φ + Φ + Ψ + Ψ− + − + −( )( ) ( ) ( )Z ZX X1
2 (4)A AB A B A B A B A B

ψ ψ ψ ψ ψΨ = Φ + Φ + Ψ + Ψ+ + − + −( )( ) ( ) ( )X ZX Z1
2 (5)A AB A B A B A B A B

ψ ψ ψ ψ ψΨ = Φ + Φ + Ψ + Ψ− + − + −( ( ) ( ) ( ) )ZX X Z1
2 (6)A AB A B A B A B A B

Based on Anita’s classical communication, Babai performs the necessary unitary operations on his share of the 
entangled qubit, as follows,

→ → → →I X Z Y00 , 01 , 10 , 11

Here I, X, Y, Z are the Pauli operators, and [cc →​ P] represent Pauli P is applied by Babai on seeing bits cc from 
Anita. In a sense, they ‘force’ the teleportated states to pick up the unitary error associated with Anita’s Bell state 
measurement |Φ​+〉​A. Now all that remains for Babai is to mark out the unitary error his resultant state contains.

For this, we leverage two qubits traveling along a closed timelike curve (CTC systems) and chronology 
respecting qubits (CR system) containing the state and an ancilla, to distinguish between non-orthogonal states 
α β α β α β α β+ − + −{ 0 1 , 0 1 , 1 0 , 1 0 }, using a circuit8 as implemented in Fig. 1, where the uni-

taries are defined as
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The circuit first swaps the CTC system with the CR system. Following that it performs a controlled unitary 
with the CR systems as the control and CTC systems as the target. Finally, it measures the CR system in the com-
putational basis. The CTC system is a nonlinear system. This is because the outcome of ρCTC, after the desired 
interactions, depends on the initial ρCTC (before the interactions) and the CR system ρCR. Also, ρCTC (before the 
interactions) depends on CR system ρCR. The objective here is to harness the non-linearity and exploit the two 
CTC qubits to effect the following map
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α β
α β
β α
β α

+ ⊗ →
− ⊗ →
+ ⊗ →
− ⊗ → .

( 0 1 ) 0 00 ,
( 0 1 ) 0 01 ,
( 0 1 ) 0 10 ,
( 0 1 ) 0 11

It can be seen, that the qubits traveling in a closed timelike curve remain unchanged, even after the implemen-
tation of the map, in each case, which is a necessary condition. Furthermore, these self-consistent solutions for 
the CTC qubits are unique, and satisfy Deutsch’s criteria as in eq. 1.

Let us understand one instance of what is happening in the circuit. Suppose the teleported state was 
ψ α β= +1 0 . According to the desired interaction, it first swaps the information in the CR system and the 
CTC system. So, the CTC system now carries α β+ ⊗( 1 0 ) 0 . Since the CR system is now carrying |1〉​ ⊗​ |0〉​, 
which the CTC system was initialized as, before the swap; unitary U10 now acts on the CTC system and results in 
the CTC system to become |1〉​ ⊗​ |0〉​, before it disappears in the wormwhole. Thus Deutsch’s criteria for chronol-
ogy respecting system is met and the qubits traveling along a CTC path remain the same both before and after the 
interaction.

What is essentially happening here is Anita prepares a known state, |ψ〉​, and teleports it to Babai. The informa-
tion of an entangled channel are not stored in the states but in the correlations. By teleporting the state, through 
the entangled channel, |ψ〉​ is affected by the correlation. In a sense, the correlation of the entanglement gets 
downloaded in the state. By studying the change of the teleported state from the prepared state, it becomes possi-
ble to understand the nature of correlation in the channel. The circuit then, by measuring b1 and b2, of the chro-
nology respecting qubits, learns which of the two conjugate eigenstates (through measurement b1) and the 
eigenvalue ( −( 1)b2), the teleported state is in.

The distinguishability of non-orthogonal states allows Babai to conclusively determine the Bell state that he 
shared with Anita. The corresponding Bell states, compared to the state identified by Babai, using the circuit as 
illustrated in Fig. 1, are shown in Table 1.

So, in conclusion, we could discriminate between Bell states with LOCC if there exists D-CTCs.
A more interesting question to now ask would be what happens if there were no unitary interactions in the 

CTCs. More concretely, can we distinguish the four Bell states if we had open timelike curves (OTCs) instead of 
CTCs? Here we show it is indeed possible, for an OTC assisted computer to distinguish between the four Bell 
states, while following a similar strategy with Anita teleporting a known state to Babai.

Suppose Anita prepares the state ψ α β= +0 1 , s.t., 0 ≤​ α ≠​ β ≤​ 1 and αβ α β− − >2 ( ) 02 2 . Then 
they follow the same strategy as above and Anita teleports the state to Babai. Babai now has the state 
ψ α β β α′ ∈ ± ±{ 0 1 , 0 1 } and needs to determine the exact state to conclude the Bell state, as previously 
shown in Table 1.

To do this, Babai uses the circuit depicted in Fig. 2. The unitary Ub b1 2
 is chosen based on Anita’s Bell measure-

ment outcomes b1b2. The unitaries are defined as

Figure 1.  Circuit to distinguish between states {α|0〉 ± β|1〉, α|1〉 ± β|0〉} using Deutschian formulations 
of CTC. 

Measurements 
Outcomes, b1, b2

State Identified by 
Babai

Conclusive Bell 
State

0, 0 α|0〉​ +​ β|1〉​ |Φ​+〉​

0, 1 α|0〉​ −​ β|1〉​ |Φ​−〉​

1, 0 α|1〉​ +​ β|0〉​ |Ψ​+〉​

1, 1 α|1〉​ −​ β|0〉​ |Ψ​−〉​

Table 1.   Corresponding Bell States Anita & Babai share.
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Babai prepares N ancillary qubits in the state |0〉​. Following that he applies a C-Not gate, with the state |ψ〉​ 
as control, targeting a fresh ancilla state each time. This correlates |ψ〉​ with each of the N ancillaries. Each of 
the ancillaries are then passed through the OTC system. The OTC, as mentioned earlier, acts as a decorelator. 
Following that, Babai simply measures the states in the computational basis and correlates his measurement 
statistics and the Bell measurement outcomes he received from Anita earlier to identify the Bell state, as shown 
in Table 2.

To exemplify, suppose the unknown state shared between Anita and Babai was Ψ+ . Anita creates the state 
ψ α β= +0 1 , and performs a Bell measurement that admits the following decomposition,

ψ ψ ψ ψ

ψ

Ψ = Φ + Φ + Ψ

+ Ψ

+ + − +

−

(
)

( ) ( )
( )

X ZX

Z

1
2

(8)

A AB A B A B A B

A B

On her systems and (say) she sees outcomes 10. This she also communicates to Babai. Effectively, the state on 
Babai’s end is α β+0 1  however this is unknown to them. According to the protocol, Babai now applies the 

unitary β α
α β

=




−







U X10 . This operation leaves the state as α β αβ− + −( ) 0 ( 2 ) 12 2 . Following that, the 

CNOTs create a the state α β αβ− + −⊗ + ⊗ +( ) 0 ( 2 ) 1N N2 2 1 1. The OTCs acting as a universal decorelator, 
causes the resulting density matrix of each qubit passing through it as α β αβ− + −( ) 0 0 ( 2 ) 1 12 2 2 2 . Upon 
measuring these qubits in the computational basis, (α2 −​ β2)2 of them outcome 0 and (−​2αβ)2 of them to out-
come in 1. Comparing this according to Table 2, we see, these measurement statistics could be produced by the 
state Ψ+ . Hence determining the Bell state perfectly.

Figure 2.  Circuit to distinguish between states {α|0〉 ± β|1〉, α|1〉 ± β|0〉} using OTC. 

Anita’s Bell 
Measurements b1, b2

Babai Sees

All outcomes |0〉 All outcomes |1〉
γN outcomes result in |0〉 and 
δN outcomes result in |1〉

δN outcomes result in |0〉 and 
γN outcomes result in |1〉

0, 0 |Φ​+〉​ |Ψ​−〉​ |Φ​−〉​ |Ψ​+〉​

0, 1 |Φ​+〉​ |Ψ​−〉​ |Φ​−〉​ |Ψ​+〉​

1, 0 |Ψ​−〉​ |Φ​+〉​ |Ψ​+〉​ |Φ​−〉​

1, 1 |Ψ​−〉​ |Φ​+〉​ |Ψ​+〉​ |Φ​−〉​

Table 2.   Lists the corresponding Bell States Anita & Babai share. The first column corresponds to Anita’s Bell 
measurements, and the first row lists the possible measurement outcomes for Babai who has an OTC assisted 
computer. Anita and Babai share the Bell state that is listed in the cell in row and column corresponding to their 
measurement outcomes. Here γ =​ (α2 −​ β2)2 and δ =​ (2αβ)2.
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Hence we have shown by construction how to leverage the power of closed timelike curves and open timelike 
curves to distinguish between Bell states using only LOCC. But what does this say about entanglement in general? 
Consider the Smolin State, a certain four-party unlockable bound-entangled state18, shared between Anita, Babai, 
Charlie & Dan,

ρ = Φ Φ ⊗ Φ Φ + Φ Φ ⊗ Φ Φ

+ Ψ Ψ ⊗ Ψ Ψ + Ψ Ψ ⊗ Ψ Ψ

+ + + + − − − −

+ + + + − − − −

1
4

(

)

AB CD AB CD

AB CD AB CD

It can be seen that entanglement between AB and CD is 0, i.e.

ε =AB CD( : ) 0

and the state is invariant under permutation. Thus,

ε ε ε= = =AB CD AC BD AD BC( : ) ( : ) ( : ) 0

In other words, ρ is separable across the three bipartite cuts AB : CD, AC : BD and AD : BC18.
The logarithmic negativity19, EN, of the state ρ, in AC : BD cut, is

ρ ρ= = + =ΓE ( ) log log ( 1/ 2 1/ 2 ) 0N 2 1 2
2 2

AC

Since the distillable entanglement, ED, is upper bounded by logarithmic negativity19, we can say

ρ ρ≤ =E E( ) ( ) 0D N

Thus distillable entanglement is exactly zero for a Smolin state.
However given the Smolin state to Anita, Babai, Charlie and Dan, which has zero distillable entanglement 

we can show that the using CTC-assisted computation, it is possible to create (increase) entanglement with 
just LOCC. Suppose Anita prepares a known qubit and teleports it to Babai. Following that Babai exploits his 
CTC-assisted computational circuit, as in Fig. 1, to unambiguously distinguish the Bell state without meeting. 
Following that, Anita and Babai classically communicate their Bell states to Charlie and Dan respectively, who 
now share a maximally entangled Bell state. Hence 1 −​ ebit was distilled between Charlie and Dan, using only 
local operations and classical communication, from the Smolin state through a D-CTC assisted computation. 
This shows, existence of D-CTCs would imply the possibility of creating entanglement using LOCC, which is 
otherwise impossible according to current formulation of quantum mechanics.

To conclude, our work here raises fundamental questions concerning the nature of entanglement in a world 
with timelike curves, that drastically changes our current understanding of quantum mechanics. An intuitive res-
olution to this might lead to support the chronology protection conjecture20, which loosely says such closed time-
like curves cannot exist in nature21. If this were to be indeed true, such contradictions could indeed be evaded. 
However, we see that such conclusions arise even in chronology respecting open timelike curves. Due to this, 
our results also hold in a world with open timelike curves. So, in a sense, this may not be a problem with the 
Deutschian formalism, but a problem in nature and there might exist a non-linear extension of quantum the-
ory22–24. A full theory of quantum gravity, we expect would perhaps resolve such challenges and contradiction 
between the implications of CTCs and laws of quantum mechanics and hope this work will help motivate further 
research.
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