Table 1 Comparison of prediction accuracy under the metric of Pearson correlation coefficient for the top-L ranked links.

From: Weight prediction in complex networks based on neighbor set

Network\Index

CN

WCN

rWCN

AA

WAA

rWAA

RA

WRA

rWRA

Celegans

0.89

0.887

0.887

0.875

0.872

0.868

0.866

0.863

0.847

0.964

0.965

0.964

0.965

0.965

0.964

0.965

0.966

0.966

Everglades

0.161

0.459

0.637

0.208

0.501

0.645

0.284

0.449

0.585

0.858

0.793

0.81

0.85

0.87

0.815

0.84

0.882

0.812

USAir1

−0.0059

0.668

0.403

−0.0711

0.346

0.375

−0.0868

0.332

0.308

0.531

0.636

0.557

0.481

0.592

0.54

0.382

0.507

0.556

USAir2

0.944

0.942

0.939

0.926

0.924

0.92

0.774

0.768

0.756

0.995

0.995

0.995

0.995

0.995

0.995

0.994

0.994

0.994

Advogato

0.861

0.867

0.87

0.837

0.835

0.84

0.789

0.79

0.806

0.963

0.963

0.963

0.962

0.961

0.962

0.956

0.956

0.957

Geom

0.808

0.863

0.876

0.816

0.853

0.878

0.855

0.853

0.871

0.958

0.961

0.964

0.942

0.948

0.957

0.919

0.919

0.941

  1. In each network, the first row is the results achieved by the linear-correlation method, while the second row shows the accuracy of our method. Each accuracy value is an average over 100 independent random divisions of the links into a training set and a validation set.