Table 2 Comparison of prediction accuracy under the metric of root mean squared error for the top-L ranked links.

From: Weight prediction in complex networks based on neighbor set

Network\Index

CN

WCN

rWCN

AA

WAA

rWAA

RA

WRA

rWRA

Celegans

0.535

0.529

0.531

0.528

0.524

0.527

0.531

0.53

0.536

0.0587

0.0595

0.0583

0.0623

0.0629

0.0627

0.0616

0.0616

0.0607

Everglades

0.0821

0.0795

0.0978

0.089

0.107

0.104

0.101

0.116

0.11

0.0686

0.0806

0.124

0.082

0.118

0.135

0.102

0.127

0.132

USAir1

0.00217

0.00359

0.00419

0.00223

0.00426

0.00433

0.00216

0.00419

0.00441

0.00194

0.00485

0.00468

0.00197

0.00455

0.00477

0.0018

0.00445

0.00466

USAir2

0.73

0.73

0.731

0.729

0.729

0.73

0.726

0.725

0.724

0.045

0.0446

0.0442

0.0455

0.045

0.0447

0.053

0.0529

0.0499

Advogato

0.313

0.311

0.309

0.311

0.308

0.306

0.313

0.311

0.307

0.0408

0.0416

0.0424

0.0439

0.0457

0.0466

0.0506

0.0518

0.0528

Geom

0.435

0.419

0.41

0.39

0.377

0.37

0.369

0.358

0.347

0.0786

0.077

0.0767

0.11

0.105

0.0978

0.129

0.131

0.12

  1. In each network, the first row is the results achieved by the linear-correlation method, while the second row shows the accuracy of our method. Each accuracy value is an average over 100 independent random divisions of the links into a training set and a validation set.