Table 1 Classification accuracy (%) of different approaches based on the Pascal VOC2007 dataset.

From: A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

Image category

RF

SVM

Adaboost-BP32

The method of Shi et al.10.

Parallel BP29

The proposed approach

plane

81.9

82.5

82.6

87.2

90.0

94.1

bike

80.0

79.9

79.8

83.3

86.2

90.5

bird

78.2

78.4

78.4

83.9

87.1

92.6

boat

79.9

80.1

80.5

85.0

87.6

94.3

btl

55.0

54.2

54.6

57.1

63.2

73.6

bus

72.8

73.2

73.1

79.6

82.9

87.3

car

81.5

80.8

81.9

86.4

89.8

95.7

cat

83.1

83.2

83.6

86.8

89.4

94.5

chair

65.4

64.9

65.8

70.5

72.6

83.6

cow

66.2

66.5

67.0

71.4

74.0

86.3

table

60.1

60.0

60.3

65.2

70.5

81.6

dog

84.3

84.1

84.7

88.4

90.4

96.5

horse

81.9

82.1

82.4

87.3

91.3

95.9

moto

79.0

79.2

79.3

83.8

87.2

92.8

pers

86.5

86.9

87.3

93.5

95.7

97.1

plant

58.3

59.1

60.2

66.1

71.9

78.6

sheep

73.6

74.1

74.8

79.9

82.6

90.0

sofa

63.5

63.9

65.7

68.3

73.8

79.9

train

81.0

81.4

81.7

85.9

89.1

94.7

TV

73.3

73.9

74.8

78.4

84.2

89.1

Mean

74.3

74.4

74.9

79.4

83.0

89.4

Standard deviation

9.314

9.377

9.213

9.400

8.576

6.634