Table 6 Running times for the different approaches.

From: A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

(a) Training time (s)

Classification approach

Image category

1,000 images

5,000 images

15,000 images

RF

10

56

373

5,874

30

58

388

6,137

100

67

404

6,581

SVM

10

55

371

5,869

30

58

386

6,130

100

68

402

6,573

Adaboost-BP

10

56

372

5,872

30

59

388

6,135

100

67

403

6,579

The method of Shi et al.

10

55

370

5,431

30

59

391

5,955

100

68

401

6,417

Parallel BP

10

12

47

139

30

14

50

149

100

19

54

155

Parallel Adaboost-BP

10

11

45

129

30

14

49

133

100

18

52

148

(b) Testing time (ms)

RF

10

4

6

10

30

4

7

13

100

6

11

16

SVM

10

4

6

9

30

4

7

12

100

6

10

15

Adaboost-BP

10

4

6

9

30

4

7

12

100

6

10

16

The method of Shi et al.

10

4

5

9

30

5

7

11

100

5

10

14

Parallel BP

10

1

2

4

30

1

2

4

100

1

3

4

Parallel Adaboost-BP

10

1

2

3

30

1

2

3

100

1

2

4