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Published: 24 January 2017 Dle.|eCtI’IC screening of excitons in 2D semiconductors is known to be a highly non-local effect, WhIC-h in
reciprocal space translates to a strong dependence on momentum transfer q. We present an analytical
model dielectric function, including the full non-linear g-dependency, which may be used as an
alternative to more numerically taxing ab initio screening functions. By verifying the good agreement
between excitonic optical properties calculated using our model dielectric function, and those derived
from ab initio methods, we demonstrate the versatility of this approach. Our test systems include:
Monolayer hBN, monolayer MoS,, and the surface exciton of a 2 X 1 reconstructed Si(111) surface.
Additionally, using our model, we easily take substrate screening effects into account. Hence, we
include also a systematic study of the effects of substrate media on the excitonic optical properties of

MoS, and hBN.

It is by now recognized that correlated electron-hole pairs, termed excitons, are essential for reliably modelling
the optical response of semiconducting materials. The dielectric screening is an essential ingredient in such cal-
culations!, and especially so for low-dimensional systems'=>. Screening in 2D semiconductors, e.g., has recently
attracted a tremendous amount of attention. In particular, the question of translating the inherently 3D concept of
a dielectric function, calculated ab initio in the random phase approximation (RPA) from super-cell geometries,
to free-standing 2D materials has been scrutinized in great detail>-°. Hence, screening in 2D materials is known to
be highly non-local, which in reciprocal space translates into a function depending strongly on momentum trans-
fer g*-°. The study of many-body effects in bulk 3D semiconductors has been aided by the application of model
dielectric functions”-!%, where the essential g-dependence is extrapolated from simple analytical formulas, thus
side-stepping numerically taxing RPA response functions. Furthermore, tight-binding (TB) states have recently
been applied as a highly efficient basis for constructing exciton wave functions®!1-13. However, the lack of com-
pleteness in such restricted bases typically implies under-screening, necessitating simplified screening models!?
or ad hoc rescaling of RPA results?. The latter approach, in particular, is questionable for free-standing 2D materi-
als, where the dielectric screening is known to approach unity? for small q - hence a simple scaling of the effective
screening by a constant factor leads to the wrong qualitative behaviour for small . Thus, reliable model dielectric
screening methodologies are highly attractive for the study of many-body optical properties of 2D systems.

In the present work, we derive an analytical model dielectric screening function for 2D semiconductors,
allowing for the description of substrate screening. This model is particularly useful in the context of excitons
constructed on the basis of a minimal TB model, but may readily be generalized for ab initio methods. To test
the applicability of the model presented here, we consider three 2D semiconductors for which rigorous ab initio
results are available for comparison: Monolayer hBN, monolayer MoS, and the dangling 7-electron bonds of a
2 x 1 buckling-chain reconstructed'* Si(111) surface. The former two cases represent van der Waals bound 2D
semiconductors - a family of materials whose optical response are currently being intensively studied*>!>1315,
However, most theoretical work are currently being carried out on free-standing monolayers, neglecting possibly
important effects of substrate screening almost always present in experiments. The latter example represents a
somewhat different system, for which the substrate cannot be eliminated for obvious reasons. Nonetheless, the
surface states of Si(111) 2 x 1 are confined to a d~4 A surface region, with energies well-isolated from the bulk
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n[A3] k| hw,[eV] | q[AY | Epl[eV]
hBN 045 490 25.34 2.40 12.47
MoS, 034 140° | 2160 228 17.71
Si 020 113" | 16.60 2.09 2191

Table 1. Parameters applied in Eq. 1. Note, E, w,, and q;p depend only on the average electron density n. The
superscripts a and b refer to refs 4 and 29, respectively.

bands in most of the Brillouin zone'¢~'8. Hence, this system has many similarities with a two-band 2D semicon-
ductor, and demonstrates the versatility of the current approach.

In all cases, excitonic optical spectra in excellent agreement with experiments and ab initio theory are
obtained. In addition, we highlight the effects of semi-infinite substrates on the optical properties. Finally, we
estimate the scaling of the exciton binding energy with substrate screening, using both the Bethe-Salpeter equa-
tion (BSE) and an effective-mass 2D Wannier model.

Theory and Methods
We start from a model dielectric function suggested by Cappellini ef al.!°, which is valid for 3D semiconductors
1

g, =1+ .
k- 11" + aqz/quF + h2q4/4m2w; 1)

q

Here, x is the g — 0 limit of the static RPA or experimental 3D dielectric function, while the Thomas-Fermi
wave vector gy and the plasma frequency w, both depend (only) on the valence electron density n(r). The

Thomas-Fermi wave vector is: Gpp = [4kpn(r)/may, with ke= [37°n(r)]*? the Fermi wave vector, and 4, the Bohr
radius. Hence, lattice periodic variations in the dielectric function may be included in this way within a kind of
local-density approximation®!°. However, we will not consider local-field effects explicitly in the following, why
we take n as the average valence electron density, which in ref. 10 was demonstrated to yield results in good agree-
ment with macroscopic bulk dielectric functions. The fitting parameter « is used to ensure agreement with RPA
calculations, and a = 1.5 turns out to be a good fit to most ab initio results'®. In Table 1, we summarize the param-
eters used for Si, hBN and MoS, (noting that x and 7 are the only free parameters, with w,, g7 and Ej following
directly from n).

Generally, scaling a material from bulk to 2D entails a changing dielectric screening due to at least two distinct
phenomena: (i) Reduced dimensions can lead to changes in the electronic structure (due to e.g. confinement
effects, surface states, etc.), which, in turn, affect the dielectric response function. (ii) Changing the structural
morphology from bulk to a 2D slab geometry obviously entails changes in the electrostatic treatment of interact-
ing charges, e.g. by the introduction of boundary conditions. Keldysh'® demonstrated that including the latter,
while neglecting the former, for a slab geometry of vanishing thickness described by a local dielectric constant,
yielded a non-local effective 2D screening function linear in in-plane momentum transfer q. More recently, Latini
and co-workers* have provided a model generalized to slab geometries of finite thickness d and fully ab initio
non-local dielectric functions. They demonstrate that the effective 2D screening is nonlinear in general, while
they confirm the validity of the linear Keldysh potential for small qd. Inspired by the success of the Keldysh
model, we treat a 2D slab of finite d using a dielectric function local in the confinement z-direction. However, rec-
ognizing the importance of the in-plane non-locality demonstrated in ref. 4, we retain the in-plane g-dependence
of the dielectric function, which we model using Eq. 1. This corresponds to the following ansatz for a model
dielectric function in real space

e(r, v) = MZeq(z)eiq'(”_p’),
A
q (2)

Here A indicates the crystal area, p = (x, ) is the in-plane coordinate, while ¢ g (2)1s taken as piecewise con-
stant depending on the medium at z.

In the remainder of the Theory and Methods section, we briefly outline the formalism necessary for applying
an effective 2D screening function in the BSE framework. This derivation is very similar to that of ref. 4, but is
included here for the sake of completeness. We then proceed to model the effective 2D interaction based on the
electrostatic boundary value problem of a slab geometry, resulting in an analytic model 2D screening function
valid for finite g and d. Moreover, we discuss the strict 2D d — 0 (Keldysh) limit in addition to a small g linearisa-
tion. Following this, we review the numerical details.

Screening of 2D excitons in the Bethe-Salpeter equation. When considering excitons in 2D sys-
tems, the question of screening becomes a delicate one, and we here adopt an analysis similar to refs 4 and 20.
The complication arises when treating the direct screened Coulomb matrix elements entering in the BSE!, which
couples singly excited states constructed from the ground state Slater determinant by substitution of a valence
band v with conduction band ¢ at k in momentum space. Upon assuming single-particle wave functions with
band index 7 and k-vector k separable on the form W, (r) = ¢,,(p)gx(2), the screened Coulomb matrix elements
may be written as
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2 2 02, 2D p .
Wok,evir = — @ ffd pd p'w=(p, P)U(P)U (P 5 AP) Y i (P). 3)
Here, p=(x, y) is the periodic in-plane coordinate, while z is the coordinate perpendicular to the plane.
Further,
W (p, of) = ff dedz'w(r, ¥)g (2 ¢ (2)85 (D)€ 4 (2) @
is the 2D screened Coulomb kernel, whilew (r, ) = [¢ '(r, ")v (" — #”)d’r" is the usual screened Coulomb

interaction, with v (r) = (4me,r)". Generally, the screened potential w?” contains parts which vary on the scale
of the unit cell, and is thus represented by the full screened interaction matrix we () in Fourier space, with G
and q in-plane reciprocal lattice vectors and Brillouin zone (BZ) wave vectors, respectively. In the present work,
we retain only the G= G’ =0 element, which essentially means we apply a Coulomb interaction macroscopically
averaged in the plane. This approach is justified by the fact that the rapidly varying components of the integrand
in Eq. 3 tend to average out when integrating, and we note that a similar approach has been applied successfully
before for van der Waals bound 2D semiconductors*.

The z-behaviour of the wave functions is dictated predominately by 2D confinement, with g,(z) fairly rigid.
Hence, energy dispersion associated with the z-direction is weaker than in-plane dispersion. Thus, we make the
ansatz that g,;(z) depends little on band index and wave vector g,.(2) ~ g(z). This strategy has previously yielded
good results in ref. 4, where |g(z)|* was extracted from ab initio calculations or, indeed, taken as a step-function
|g(2)|*=d'©(d/2 — |z|), with d the sample thickness. We adopt the latter strategy here, which leads to

1 drn
oo (q) = ol f I n Woolq> 2, 2")dz'dz )

withwyy(q, z, 2/) = f 56()1(4> z, 2" )vq(z” — 2)dz", where v,(z) is the 2D Fourier transform of v(r).

Screened Poisson equation. We identify wy(q, z, z') as the Fourier transform of the electrostatic potential
at r generated by a point charge at +/, screened by an effectively in-plane homogeneous electron gas. We accord-
ingly approximate wy, as the solution to the in-plane Fourier transformed screened Poisson equation ¢,, using
the model dielectric function Eq. 2:

1 N |2 d 9 ’
606(2 z') =|q7€,(2) 8zeq(z) 5 gz, 2). ©)

Note, in writing Eq. 6 we have assumed an in-plane isotropic material e q = €, in agreement with previous
work>*, Furthermore, we assume the dielectric constant « entering e ;Via Eq. 1 to be independent of thickness d.
This approximation is not equally valid for all materials due to, e.g., quantum confinement affecting the electronic
response, or hybridization between the electronic states of the 2D semiconductor and the substrate. However, for
the important example of 2D van der Waals stacked semiconductors, such effects are known to be limited due to
weak interlayer coupling?"?2.

Solutions to Eq. 6 with the source coordinate z’ confined to the & d/2 extent of the sample, and taking ¢ (2t
be piecewise constant

€p 2> d2
€,() = ¢ |z2| < dl2 |
ez, z< —d/2 @)
may be found on the form
Cie ¥ z>d/2
Pqle2) = 2 ! Coe™® 4 Cye® + e 171 |z < dp2.
o C,e? z < —d/2 (8)

The coefficients C, are found by solving the appropriate boundary value problem for the potential. Hence, we
have access to ¢,(z, z'), and can perform the integrals in Eq. 5 with wgy~ ¢, analytically.

In the case of a free-standing system ¢; = ez = 1the 2D screened potential becomes

d
1 (g+1— 2/dg) e’ — €+ 1+ 2/dq.

2D
Woo (4) =
€od qzeq[(eq + et — €+ 1] 9)
The limit d — 0 is well-defined, and yields (2g¢,)”" independent of the 2D semiconductor response ¢ g Thisisa
consequence of the dielectric function describing a density response, which must vanish with thickness d. However,
we may suppose the electric susceptibility x, of the vanishingly thin 2D semiconductor to be described by a finite

sheet electric susceptibility qu» and since ¢, is a macroscopic quantity, we may writee, = 1 + X, =1+ qu/ d. This
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expression yields the well-known>*!? strict 2D d — 0 limit of a free-standing film wgy’ (q) = [2g¢,(1 + qxqs 217!
Note, the definition of the 2D susceptibility X, S = d[e, — 1] corresponds to requiring the sheet of infinitesimal
thickness to posses the same z-averaged polarlzatlon as the corresponding slab of finite width d, similarly to ref. 3.

2D model dielectric function. We might suppose an effective 2D dielectric screening function 52[) , which
satisfies

wao (4) = vao (@)/€27, (10)

where D(q) =d sz i vq(z — z')dzdz' = {1 + [exp( — qd) - 1]/qd}/eoq2d is the 2D bare interaction also
found by setting ¢, = 1in Eq. 9. Hence, dividing vgg’ by wgy from Eq. 9 we may calculate an effective 2D model

dielectric function for a free-standing film of arbitrary thickness d, using the expression (with 3= gqd):

w Gt e+ —e)eNB—1+¢" o
€ = — — R eqzeqzl).
Bl + e+ (1 —e)e ] +2(e” —1) (11)

Taking ¢® and €’ different from unity allows for the introduction of substrate media, and this complication
enters naturally through the boundary value conditions for 9,/0z. Analytical coefficients C; may still be found,
and an analytical expression for the model 2D effective screening function is

w egle,S o cosh 3 + (I, + 2)sinh B][qd — 1 + e ]

€ = ﬁ[eqzqcoshﬁ + (I, + es)sinhﬁ] + 2I1,(1 —cosh3) — eqzqsinhﬁ‘ (12)

Here, we have used the abbreviations 2 g = EZ + eg, and I1 =€ qu

It has become quite popular to apply a linearised 2D screening valid for small g, and excitonic properties using
this linearisation are often in surprisingly good agreement with results generated using the full g-dependence®*
In this spirit, we report also the g-linearised version of Eq. 12, valid for small g

Py d
1 q
-3 - - 1II , 11 g).
€ > + 2[3k [/@ + Iib ol/K] (small q) (13)
Note that while the free-standing 2D case approaches unity for g — 0, the effective screening of the supported
2D system approaches the average substrate screening ¥,/2. We may also take the strict 2D limit d — 0, which
yields simply

4P ~ B2 + qx 2, (d—0), (14)

in full agreement with previously published results>'?. If we further restrict ourselves to the small g limit where

€, ~ K, we arrive at the Keldysh result"

eéD ~ [k, + Kpl/12 + qd[k — 1]/2, (d — 0, small g). (15)

Note, in the d — 0 limit the bare 2D interaction for use with Eqs. 14 and 15 reduces to vy’ = (2q¢,)”"- Thus,
with Eq. 1, Eqs 11 to 15 provide a fully analytical 2D screening model, which takes the dielectric constant x and
the average electron density » for substrate and film as input.

In Fig. 1(a), we plot the 2D potential for an hBN film (d=3.2 A) in real space, treating it either as a 2D
slab (Equation 12), using the g-linearised screening (Equation 13), taking the strict 2D limit with finite g
(Equation 14), or taking the Keldysh limit of small g and d — 0 (Equation 15). These results are simply the Fourier
transform of the screened potential in g-space. We compare potentials for a free-standing film to results for a
film deposited on a Si substrate. In the latter case, results derived from the g-linearised screening (not shown)
become un-physical due to the negative slope of Eq. 13, which would imply negative screening for large g. The
potentials for a free-standing film are almost identical to those published in ref. 4 (with the exception of the
strict 2D result valid for finite ¢ and d — 0) upon noting that we scale our potentials by p, which makes the dif-
ferences between the models more apparent. The largest disagreement between the various models is noticed for
short-range interaction. These differences may be traced back to the various simplifications affecting the screen-
ing functions at large g, which in real space translate to differing short-range behaviour. For example, the strict
2D result Eq. 14 becomes unscreened for ¢ — 0o, which causes the short-range part of the potential to approach
a simple p~! Coulomb interaction screened by the average of the substrate dielectric constants for p— 0. This is
in marked contrast to the g-linear results Eqs 13 and 15, which tend to over-screen the large q/small p part of
the interaction. The full 2D slab model screened by Eq. 12 tends to an intermediate regime, with the short range
screening enhanced relative to the strict 2D model Eq. 14, but weaker than for the g-linear models Eqs 13 and
15. Hence, care must be taken when using linear screening models in the context of strongly bound and localized
Frenkel-like excitons, which are particularly sensitive to short range interaction.

In Eq. 6, we might have assumed an anisotropic screening by taking the dielectric constant on a tensorial form
€, = diag(ef, €f, e;). This complication would lead to an effective 2D screening identical to Eq. 12, but with the
substitutions e, — [e“€”, 3 — qd €’/€%, and an overall factor of //¢Z. Consequently, the g-linearised result
would be identical to Eq. 13, with the exception that the first and second x should be substituted by the in-plane
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Figure 1. (a) Real space electron-hole interaction potentials. The results denoted “2D slab”, “Linear 2D”, “Strict
2D” and “Keldysh” are screened using Eqs 12, 13, 14 and 15, respectively. (b) Schematic representation of the
slab geometry and its strict 2D limit.

Binding energy
Present 0.44 1.90 0.20
Ab initio 0‘1%2.26’502'5434’ 1.8%2, 2,054, 2.120 0.26'%
GW and TB gaps
Present 242 8.00 0.66
AD initio 2.48%,2.7% 7.9%2,7.4%0 0.62'7,0.69

Table 2. Comparison of exciton binding energies |E,| and GW band gaps. All values are in eV. Note, only
exciton binding energies are actually calculated in the present work. Appropriate TB band gaps are ensured
by using TB parameters which ensure agreement between experimental and theoretical exciton features.
Superscripts indicate references.

and out-of-plane dielectric constants, respectively. However, the strict 2D limit Eq. 14 would contain only the
in-plane dielectric constant. In the following sections, we neglect this complication and demonstrate that this is
sufficient to achieve agreement with ab initio results.

Computational details. We formulate the exciton problem in a TB basis using a methodology described
previously'2, with the exception that the screened Coulomb kernel wgy is used instead of the smeared Coulomb
potential applied in refs 12, 13 and 15. All TB band structures are parametrized to yield band gaps ensuring the
correct spectral positions of the fundamental exciton features taken from experiments, hence, we do not perform
an explicit GW calculation in the present work. Instead, we take the TB bands as a model for the corresponding
GW energies, c.f. Table 2. Spin-orbit coupling is included only for MoS,. For MoS, and Si we apply an sp*d° basis
as described in refs 12 and 23, respectively. The Si (111) surface is described using a slab geometry with one face
H-terminated, leaving only a single set of surface states in the band gap. Note that in order to achieve the band gap
listed in Table 2, the onsite energies of the top buckled surface atoms were adjusted by + 15%. This is necessary to
take into account charge redistribution on the reconstructed atoms and the reduced screening of the surface
region (suggesting a larger GW correction compared to bulk for states localized there), even though the TB
parameters® were fitted to a GW band structure. The MoS, parameters are fitted to a DFT band structure, hence,
we apply a scissor correction in that case. For hBN, a m-electron p, basis is sufficient. We apply the same model as
in ref. 13, with the exception that we use onsite energies of = 2.4 eV for B and N sites, respectively, and a scissor
correction of 3.2eV.

In all cases, we apply dense k-grids in excess of 100 x 100 k-points using a recursive Lanczos/Haydock
scheme'?, converging the exciton binding energies to the meV level and smearing out the contribution from the
individual k-points in the continuum part of the spectrum. For hBN and Si (111), we include the valence and
conduction band closest to the Fermi level, while for MoS, we include the four lowest conduction bands and four
highest valence bands. Where nothing else is noted, we apply a phenomenological broadening of 30 meV.

We compare exciton energies E, generated using our BSE approach with results calculated using the well-known
and much simpler 2D Wannier exciton model (see e.g. refs 4 and 6):[ — ﬁ2v§ 12u — w?P(p)] Vexc(P) = Eytboy ()
We apply a variational ansatz for the exciton wave function ¢, (p) = -/7/2 X exp[— Ap], and determine the
parameter A by minimizing the energy E;. The reduced electron-hole mass . is extracted from the near-parabolic
dispersion of the TB bands near the K-points of the Brillouin zone, and is 0.24m, for MoS, and 0.36m, for hBN, with
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Figure 2. (a) The effective screening for three different 2D semiconductors. We include results with the

three materials deposited on a Si substrate and ab initio results from ref. 5 for comparison. (b) Optical sheet
conductivity for the three materials considered, calculated both including excitons (BSE), and neglecting
many-body effects in the independent particle approximation (IPA). For MoS, and Si(111), we compare

with experimental differential reflectance spectra, which are directly proportional to the calculated sheet
conductivities. These experimental results are from refs 24 and 27, respectively. For hBN, we compare with the
absorption spectra of monolayer hBN flakes suspended in solution from ref. 26. Note, all experimental spectra
are scaled for comparison with theory.

m, the free-electron mass. The screened potential in real space w?P(p) is taken as the inverse Fourier transform of
Eq. 10 either (i) keeping d finite and using Eq. 12 for screening, or (ii) taking the d — 0 limit and applying Eq. 15 for
screening. The latter case results in the Keldysh potential'® w?” (p) = [H(X,p/2r,) — Vo(Xop/270)1/8¢,7,. The
screening lengthisry = x$/2 = d[x — 1]/2, while H, and )/, indicate the Struve function and Bessel function of
the second kind, respectively. Note, in deriving the Keldysh potential, we apply the strict d — 0 limit Eq. 14 for the
2D dielectric function, instead of the g-linearised expression for finite d Eq. 13, which would also yield a
Keldysh-type potential. In fact, the latter approach was shown in ref. 4 to yield good results in the absence of sub-
strate. However, for substrate screening «, > k, the linearised dielectric function in Eq. 13 may have a negative slope
in g-space, as briefly mentioned before, and which can be verified from the hBN results in Fig. 2(a). This leads to
un-physical results due to negative screening at large g.

Results and Discussion

We consider initially the effective 2D screening displayed in Fig. 2(a), and note the good overall quantitative
agreement between results derived using Eq. 12, and those calculated using more complicated quantum-based
approaches*®. In fact, the overall agreement is surprising given the simplicity of Eqs 1 and 12 when compared to
the full numerical problem of calculating RPA dielectric functions, correctly taking local-field effects into account,
avoiding spurious Coulomb interaction between artifically repeated images, etc. Hence, the results of ref. 4
constitute a more numerically taxing problem, albeit with the advantages of being derived from ab initio theory.
Equation 12, on the other hand, represents a model expression which can be used to extrapolate results very sim-
ilar to 2D RPA calculations, in the same way the original 3D expression Eq. 1 is used for bulk semiconductors®!°.
The significant qualitative differences between free-standing 2D and 3D screening functions for small g have been
discussed exhaustively before®*, however, the effects of including screening from a supporting substrate (chosen
as Siin Fig. 2(a)) are clearly seen to impact the small-g range, which is important for excitonic optical properties®.

In Fig. 2(b), we include optical sheet conductivities in units of ¢, = e*/4#, calculated both in the independent
particle approximation (IPA) and including excitons through the BSE screened using the full 2D slab model
Eq. 12. All excitonic spectra are in excellent agreement with previously published theoretical work and experi-
mental findings.

In Table 2, we compare the magnitude of the exciton binding energies |E;| calculated here with ab initio results
from other sources. We note a very good quantitative agreement, which suggests a high degree of transferability
of the model dielectric function applied in this work. The excitonic optical spectrum of MoS, has been measured
experimentally in e.g. refs 21 and 24, and our model reproduces the pronounced exciton peak structure nicely.
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Figure 3. Excitonic optical response of MoS, (a) and monolayer hBN (b) deposited on the various substrates
indicated on the figures. , (in-plane) values are from ref. 4 (MoS,, hBN), ref. 29 (Si, GaAs, AIP), ref. 30 (GaN)
and ref. 31 (SiO,). On the figure, we also indicate the average valence charge densities n, used to model the
g-dependence of the substrate dielectric function in Eq. 1. Note, the energy axis is displaced by the exciton
binding energy. Hence, the locations of the band gaps on the displaced energy axis correspond to exciton
binding energies, and are indicated by the triangles. To resolve the exciton fine-structure, the k-point sampling
is increased to 200 x 200 for hBN and 150 x 150 for MoS,. Additionally, the phenomenological broadening is
reduced to 10 meV. Note, the results for hBN are displayed using a logarithmic y-axis due to the dominating
main absorption peak, and the y-limits of all figures are identical to the results for vacuum.

One exception is the splitting of the peak near 3 eV, which is not observed experimentally. This discrepancy
may be explained by electron-phonon interaction, essentially resulting in a frequency dependent broadening®.
Similarly, the hBN spectrum is dominated by a single intense peak, in good agreement with experiments®. A
surface exciton peak has also been observed? for Si (111) 2 X 1, with a line shape very similar to Fig. 2(b) and
peak position at 0.47 eV.

Having established the reliability of the model dielectric function, we proceed to study the effects of various
substrates upon noting that the present model can be expected to work only for cases where the states of the 2D
semiconductor hybridizes weakly with the substrate. We consider the case of hBN and MoS, supported by various
materials, hence, one half-plane is vacuum while the other is occupied by a material of dielectric constant €2 mod-
elled using Eq. 1. However, top-substrates can easily be incorporated, allowing for the simulation of embedded 2D
materials. Also, we find the g-dependence of ¢; and eZ to have negligible influence on the effective 2D screening.
Hence, although this complication is included in the present paper, it may safely be neglected in future work,
setting e = £,

In Fig. 3, we display optical spectra for various substrates. In all cases, we observe a dramatic reduction of the
exciton binding energy |E,| with increasing substrate screening k,, as may also be verified from Fig. 4. However,
we expect the GW gap E, to decrease by an almost identical value, similarly to what is typically observed from
ab initio calculations, such as ref. 28. Hence, we opt to displace the photon energy axis by the energy of the first
exciton peak E,,. = E, — |E;|. For hBN, we clearly observe the exciton Rydberg series in the energy interval E,,. to
E,. Although the overall spectral structure is conserved with changing substrate, i.e. the dominating main absorp-
tion peak is roughly one order of magnitude larger than subsequent peaks, we see that the exciton fine-structure
is highly dependent on substrate screening, and almost completely quenched for «, > 10.

For MoS,, the main effect of increasing substrate screening is to reduce the intensity of the main exciton fea-
tures, and to blue-shift the peaks near 1 eV on the displaced energy axis. Hence, the most intense peak at 0.9 eV
for free-standing MoS, is found at 0.97 eV for the case of a Si substrate. These are attributes which may be measur-
able experimentally. Furthermore, for substrates with smaller dielectric constants x, < 3, an exciton fine-structure
is observed in the energy range between E,,. and E,. However, with increasing substrate screening, the Rydberg
series is compressed towards the band gap, giving rise to a slight bulge in the optical spectrum just below E,.
Hence, for a GaAs substrate, this bulge is seen as a shoulder on the low-energy side of the second exciton peak.
Interestingly, for moderate screening x, > 2, the Rydberg series arising from the exciton of second-lowest energy
gives rise to a bulge in the continuum part of the spectrum. For a GaN substrate, this is observed near 0.2eV on
the displaced energy axis.

In Fig. 4, we compare BSE exciton binding energies (squares and triangles) to results generated using the
much simpler 2D Wannier model, which describes either an exciton confined to a homogeneous slab of finite
width screened using Eq. 12 (full lines), or a strict 2D exciton screened using the Keldysh model Eq. 15 (dashed
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Figure 4. Binding energies of the lowest exciton for hBN and MoS, deposited on various substrates. Squares
and triangles indicate results extracted from the BSE, the dashed lines are the 2D Wannier model results for a
slab of finite thickness d, while the full lines are the strict 2D limit of the same.

lines). All three models display the same qualitative behaviour, i.e. a decreasing binding energy with increas-
ing substrate screening. However, a few differences are immediately apparent. For a free-standing film, the slab
and Keldysh models are in fair agreement in overestimating the exciton binding energies, compared to the BSE.
This trend is similar to what has been reported before*. We have tested our BSE approach upon substituting the
TB energies with parabolic bands extrapolated from the nearest K-point of the Brillouin zone, and we find the
resulting binding energies to agree well with the 2D Wannier results. Hence, we attribute the overestimation of
the binding energies in the slab and Keldysh exciton models to the effective-mass approximation inherent to
these. Upon increasing the substrate screening, binding energies predicted using the strict 2D Keldysh potential
decrease more rapidly than predicted by both the finite slab model and the BSE. This trend is especially pro-
nounced when the substrate dielectric constant , becomes larger than the 2D semiconductor dielectric constant
k, which is most pronounced for the case of hBN with £ =4.9. Hence, we interpret this as a slight over-estimation
of substrate screening in the Keldysh model, as might be expected when taking the 2D limit, thereby reducing the
exciton-substrate effective distance to zero.

Conclusion

In conclusion, we have demonstrated how an analytical model dielectric function may be applied as a reliable
tool for predicting the excitonic optical properties of 2D semiconductors. Thus, the calculation of numerically
taxing RPA response functions, which is a typical ingredient in exciton calculations, may be sidestepped. This
approach was demonstrated to be particularly effective in the framework of tight-binding, where under-screening
due to incomplete basis sets can yield unreliable exciton binding energies. We predict substrate screening to gen-
erally have a large impact on the exciton binding energy of supported 2D semiconductors. The exciton Rydberg
series, in particular, is strongly suppressed with increasing substrate screening. The popular 2D Wannier model is
demonstrated to yield results in qualitative agreement with the BSE approach.
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