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Model dielectric function for 2D 
semiconductors including substrate 
screening
Mads L. Trolle1,2,*, Thomas G. Pedersen3,4,* & Valerie Véniard1,2,*

Dielectric screening of excitons in 2D semiconductors is known to be a highly non-local effect, which in 
reciprocal space translates to a strong dependence on momentum transfer q. We present an analytical 
model dielectric function, including the full non-linear q-dependency, which may be used as an 
alternative to more numerically taxing ab initio screening functions. By verifying the good agreement 
between excitonic optical properties calculated using our model dielectric function, and those derived 
from ab initio methods, we demonstrate the versatility of this approach. Our test systems include: 
Monolayer hBN, monolayer MoS2, and the surface exciton of a 2 × 1 reconstructed Si(111) surface. 
Additionally, using our model, we easily take substrate screening effects into account. Hence, we 
include also a systematic study of the effects of substrate media on the excitonic optical properties of 
MoS2 and hBN.

It is by now recognized that correlated electron-hole pairs, termed excitons, are essential for reliably modelling 
the optical response of semiconducting materials. The dielectric screening is an essential ingredient in such cal-
culations1, and especially so for low-dimensional systems1–5. Screening in 2D semiconductors, e.g., has recently 
attracted a tremendous amount of attention. In particular, the question of translating the inherently 3D concept of 
a dielectric function, calculated ab initio in the random phase approximation (RPA) from super-cell geometries, 
to free-standing 2D materials has been scrutinized in great detail3–5. Hence, screening in 2D materials is known to 
be highly non-local, which in reciprocal space translates into a function depending strongly on momentum trans-
fer q3–6. The study of many-body effects in bulk 3D semiconductors has been aided by the application of model 
dielectric functions7–10, where the essential q-dependence is extrapolated from simple analytical formulas, thus 
side-stepping numerically taxing RPA response functions. Furthermore, tight-binding (TB) states have recently 
been applied as a highly efficient basis for constructing exciton wave functions2,11–13. However, the lack of com-
pleteness in such restricted bases typically implies under-screening, necessitating simplified screening models12 
or ad hoc rescaling of RPA results2. The latter approach, in particular, is questionable for free-standing 2D materi-
als, where the dielectric screening is known to approach unity3 for small q - hence a simple scaling of the effective 
screening by a constant factor leads to the wrong qualitative behaviour for small q. Thus, reliable model dielectric 
screening methodologies are highly attractive for the study of many-body optical properties of 2D systems.

In the present work, we derive an analytical model dielectric screening function for 2D semiconductors, 
allowing for the description of substrate screening. This model is particularly useful in the context of excitons 
constructed on the basis of a minimal TB model, but may readily be generalized for ab initio methods. To test 
the applicability of the model presented here, we consider three 2D semiconductors for which rigorous ab initio 
results are available for comparison: Monolayer hBN, monolayer MoS2 and the dangling π-electron bonds of a 
2 ×​ 1 buckling-chain reconstructed14 Si(111) surface. The former two cases represent van der Waals bound 2D 
semiconductors - a family of materials whose optical response are currently being intensively studied4,5,12,13,15. 
However, most theoretical work are currently being carried out on free-standing monolayers, neglecting possibly 
important effects of substrate screening almost always present in experiments. The latter example represents a 
somewhat different system, for which the substrate cannot be eliminated for obvious reasons. Nonetheless, the 
surface states of Si(111) 2 ×​ 1 are confined to a d ≈​ 4 Å surface region, with energies well-isolated from the bulk 
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bands in most of the Brillouin zone16–18. Hence, this system has many similarities with a two-band 2D semicon-
ductor, and demonstrates the versatility of the current approach.

In all cases, excitonic optical spectra in excellent agreement with experiments and ab initio theory are 
obtained. In addition, we highlight the effects of semi-infinite substrates on the optical properties. Finally, we 
estimate the scaling of the exciton binding energy with substrate screening, using both the Bethe-Salpeter equa-
tion (BSE) and an effective-mass 2D Wannier model.

Theory and Methods
We start from a model dielectric function suggested by Cappellini et al.10, which is valid for 3D semiconductors
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Here, κ is the q →​ 0 limit of the static RPA or experimental 3D dielectric function, while the Thomas-Fermi 
wave vector qTF and the plasma frequency ωp both depend (only) on the valence electron density n(r). The 
Thomas-Fermi wave vector is: π= rq k n a4 ( )/TF F 0 , with kF =​ [3π2n(r)]2/3 the Fermi wave vector, and a0 the Bohr 
radius. Hence, lattice periodic variations in the dielectric function may be included in this way within a kind of 
local-density approximation9,10. However, we will not consider local-field effects explicitly in the following, why 
we take n as the average valence electron density, which in ref. 10 was demonstrated to yield results in good agree-
ment with macroscopic bulk dielectric functions. The fitting parameter α is used to ensure agreement with RPA 
calculations, and α =​ 1.5 turns out to be a good fit to most ab initio results10. In Table 1, we summarize the param-
eters used for Si, hBN and MoS2 (noting that κ and n are the only free parameters, with ωp, qTF and EF following 
directly from n).

Generally, scaling a material from bulk to 2D entails a changing dielectric screening due to at least two distinct 
phenomena: (i) Reduced dimensions can lead to changes in the electronic structure (due to e.g. confinement 
effects, surface states, etc.), which, in turn, affect the dielectric response function. (ii) Changing the structural 
morphology from bulk to a 2D slab geometry obviously entails changes in the electrostatic treatment of interact-
ing charges, e.g. by the introduction of boundary conditions. Keldysh19 demonstrated that including the latter, 
while neglecting the former, for a slab geometry of vanishing thickness described by a local dielectric constant, 
yielded a non-local effective 2D screening function linear in in-plane momentum transfer q. More recently, Latini 
and co-workers4 have provided a model generalized to slab geometries of finite thickness d and fully ab initio 
non-local dielectric functions. They demonstrate that the effective 2D screening is nonlinear in general, while 
they confirm the validity of the linear Keldysh potential for small qd. Inspired by the success of the Keldysh 
model, we treat a 2D slab of finite d using a dielectric function local in the confinement z-direction. However, rec-
ognizing the importance of the in-plane non-locality demonstrated in ref. 4, we retain the in-plane q-dependence 
of the dielectric function, which we model using Eq. 1. This corresponds to the following ansatz for a model 
dielectric function in real space
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Here A indicates the crystal area, ρ =​ (x, y) is the in-plane coordinate, while z( )q  is taken as piecewise con-
stant depending on the medium at z.

In the remainder of the Theory and Methods section, we briefly outline the formalism necessary for applying 
an effective 2D screening function in the BSE framework. This derivation is very similar to that of ref. 4, but is 
included here for the sake of completeness. We then proceed to model the effective 2D interaction based on the 
electrostatic boundary value problem of a slab geometry, resulting in an analytic model 2D screening function 
valid for finite q and d. Moreover, we discuss the strict 2D d →​ 0 (Keldysh) limit in addition to a small q linearisa-
tion. Following this, we review the numerical details.

Screening of 2D excitons in the Bethe-Salpeter equation.  When considering excitons in 2D sys-
tems, the question of screening becomes a delicate one, and we here adopt an analysis similar to refs 4 and 20. 
The complication arises when treating the direct screened Coulomb matrix elements entering in the BSE1, which 
couples singly excited states constructed from the ground state Slater determinant by substitution of a valence 
band v with conduction band c at k in momentum space. Upon assuming single-particle wave functions with 
band index n and k-vector k separable on the form Ψ​nk(r) =​ ψnk(ρ)gnk(z), the screened Coulomb matrix elements 
may be written as

n [Å−3] κ ħωp [eV] qTF [Å−1] EF [eV]

hBN 0.45 4.9a 25.34 2.40 12.47

MoS2 0.34 14.0a 21.60 2.28 17.71

Si 0.20 11.3b 16.60 2.09 21.91

Table 1.   Parameters applied in Eq. 1. Note, EF, ωp, and qTF depend only on the average electron density n. The 
superscripts a and b refer to refs 4 and 29, respectively.
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Here, ρ =​ (x, y) is the periodic in-plane coordinate, while z is the coordinate perpendicular to the plane. 
Further,

ρ ρ′ ′ ′ ′ ′= ′ ′ ′ ′∬ ⁎ ⁎r rw dzdz w g z g z g z g z( , ) ( , ) ( ) ( ) ( ) ( ) (4)k k k k
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is the 2D screened Coulomb kernel, while ∫′ ′= ″ ″ − ″−r r r r r rw v d r( , ) ( , ) ( )1 3  is the usual screened Coulomb 
interaction, with π= −rv r( ) (4 )0

1. Generally, the screened potential w2D contains parts which vary on the scale 
of the unit cell, and is thus represented by the full screened interaction matrix ′ qw ( )GG

D2  in Fourier space, with G 
and q in-plane reciprocal lattice vectors and Brillouin zone (BZ) wave vectors, respectively. In the present work, 
we retain only the G =​ G′ =​ 0 element, which essentially means we apply a Coulomb interaction macroscopically 
averaged in the plane. This approach is justified by the fact that the rapidly varying components of the integrand 
in Eq. 3 tend to average out when integrating, and we note that a similar approach has been applied successfully 
before for van der Waals bound 2D semiconductors4.

The z-behaviour of the wave functions is dictated predominately by 2D confinement, with gnk(z) fairly rigid. 
Hence, energy dispersion associated with the z-direction is weaker than in-plane dispersion. Thus, we make the 
ansatz that gnk(z) depends little on band index and wave vector gnk(z) ≈​ g(z). This strategy has previously yielded 
good results in ref. 4, where |g(z)|2 was extracted from ab initio calculations or, indeed, taken as a step-function 
|g(z)|2 =​ d−1Θ​(d/2 −​ |z|), with d the sample thickness. We adopt the latter strategy here, which leads to
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with ∫′ = ″ ″ − ′ ″−q qw z z z z v z z dz( , , ) ( , , ) ( )q00 00
1 , where vq(z) is the 2D Fourier transform of v(r).

Screened Poisson equation.  We identify w00(q, z, z′​) as the Fourier transform of the electrostatic potential 
at r generated by a point charge at r′, screened by an effectively in-plane homogeneous electron gas. We accord-
ingly approximate w00 as the solution to the in-plane Fourier transformed screened Poisson equation ϕq, using 
the model dielectric function Eq. 2:
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Note, in writing Eq. 6 we have assumed an in-plane isotropic material =q q  , in agreement with previous 
work3,4. Furthermore, we assume the dielectric constant κ entering q via Eq. 1 to be independent of thickness d. 
This approximation is not equally valid for all materials due to, e.g., quantum confinement affecting the electronic 
response, or hybridization between the electronic states of the 2D semiconductor and the substrate. However, for 
the important example of 2D van der Waals stacked semiconductors, such effects are known to be limited due to 
weak interlayer coupling21,22.

Solutions to Eq. 6 with the source coordinate z′​ confined to the ±​ d/2 extent of the sample, and taking z( )q  to 
be piecewise constant
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The coefficients Ci are found by solving the appropriate boundary value problem for the potential. Hence, we 
have access to ϕq(z, z′​), and can perform the integrals in Eq. 5 with w00 ≈​ ϕq analytically.

In the case of a free-standing system  = = 1q
a

q
b  the 2D screened potential becomes
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The limit d →​ 0 is well-defined, and yields −q(2 )0
1  independent of the 2D semiconductor response q. This is a 

consequence of the dielectric function describing a density response, which must vanish with thickness d. However, 
we may suppose the electric susceptibility χq of the vanishingly thin 2D semiconductor to be described by a finite 
sheet electric susceptibility χq

S, and since q  is a macroscopic quantity, we may write  χ χ= + = + d1 1 /q q q
S . This 
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expression yields the well-known3,4,19 strict 2D d →​ 0 limit of a free-standing film χ= + −w q q q( ) [2 (1 /2)]D
q
S

00
2

0
1 . 

Note, the definition of the 2D susceptibility χ = −d [ 1]q
S

q  corresponds to requiring the sheet of infinitesimal 
thickness to posses the same z-averaged polarization as the corresponding slab of finite width d, similarly to ref. 3.

2D model dielectric function.  We might suppose an effective 2D dielectric screening function q
D2 , which 

satisfies
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2  is the 2D bare interaction also 
found by setting = 1q  in Eq. 9. Hence, dividing v D

00
2  by w D

00
2  from Eq. 9 we may calculate an effective 2D model 

dielectric function for a free-standing film of arbitrary thickness d, using the expression (with β =​ qd):
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Taking q
a  and q

b  different from unity allows for the introduction of substrate media, and this complication 
enters naturally through the boundary value conditions for ∂​ϕq/∂​z. Analytical coefficients Ci may still be found, 
and an analytical expression for the model 2D effective screening function is
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Here, we have used the abbreviations  Σ = +q q
a

q
b, and  Π =q q

a
q
b.

It has become quite popular to apply a linearised 2D screening valid for small q, and excitonic properties using 
this linearisation are often in surprisingly good agreement with results generated using the full q-dependence3,4. 
In this spirit, we report also the q-linearised version of Eq. 12, valid for small q

κ κ κ κ≈
Σ
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qd q
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Note that while the free-standing 2D case approaches unity for q →​ 0, the effective screening of the supported 
2D system approaches the average substrate screening Σ​0/2. We may also take the strict 2D limit d →​ 0, which 
yields simply

 χ≈ Σ + →q d/2 /2, ( 0), (14)qD
q q

S2

in full agreement with previously published results3,19. If we further restrict ourselves to the small q limit where 
κ≈q , we arrive at the Keldysh result19

 κ κ κ≈ + + − → .qd d q[ ]/2 [ 1]/2, ( 0, small ) (15)q
D
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2

Note, in the d →​ 0 limit the bare 2D interaction for use with Eqs. 14 and 15 reduces to = −v q(2 )D
00
2

0
1. Thus, 

with Eq. 1, Eqs 11 to 15 provide a fully analytical 2D screening model, which takes the dielectric constant κ and 
the average electron density n for substrate and film as input.

In Fig. 1(a), we plot the 2D potential for an hBN film (d =​ 3.2 Å) in real space, treating it either as a 2D 
slab (Equation 12), using the q-linearised screening (Equation 13), taking the strict 2D limit with finite q 
(Equation 14), or taking the Keldysh limit of small q and d →​ 0 (Equation 15). These results are simply the Fourier 
transform of the screened potential in q-space. We compare potentials for a free-standing film to results for a 
film deposited on a Si substrate. In the latter case, results derived from the q-linearised screening (not shown) 
become un-physical due to the negative slope of Eq. 13, which would imply negative screening for large q. The 
potentials for a free-standing film are almost identical to those published in ref. 4 (with the exception of the 
strict 2D result valid for finite q and d →​ 0) upon noting that we scale our potentials by ρ, which makes the dif-
ferences between the models more apparent. The largest disagreement between the various models is noticed for 
short-range interaction. These differences may be traced back to the various simplifications affecting the screen-
ing functions at large q, which in real space translate to differing short-range behaviour. For example, the strict 
2D result Eq. 14 becomes unscreened for q →​ ∞​, which causes the short-range part of the potential to approach 
a simple ρ−1 Coulomb interaction screened by the average of the substrate dielectric constants for ρ →​ 0. This is 
in marked contrast to the q-linear results Eqs 13 and 15, which tend to over-screen the large q/small ρ part of 
the interaction. The full 2D slab model screened by Eq. 12 tends to an intermediate regime, with the short range 
screening enhanced relative to the strict 2D model Eq. 14, but weaker than for the q-linear models Eqs 13 and 
15. Hence, care must be taken when using linear screening models in the context of strongly bound and localized 
Frenkel-like excitons, which are particularly sensitive to short range interaction.

In Eq. 6, we might have assumed an anisotropic screening by taking the dielectric constant on a tensorial form 
= ρ ρdiag( , , )q q q q

z    . This complication would lead to an effective 2D screening identical to Eq. 12, but with the 
substitutions → ρ

q q
z

q   ,  β → ρqd /q q
z , and an overall factor of ρ/q q

z  . Consequently, the q-linearised result 
would be identical to Eq. 13, with the exception that the first and second κ should be substituted by the in-plane 
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and out-of-plane dielectric constants, respectively. However, the strict 2D limit Eq. 14 would contain only the 
in-plane dielectric constant. In the following sections, we neglect this complication and demonstrate that this is 
sufficient to achieve agreement with ab initio results.

Computational details.  We formulate the exciton problem in a TB basis using a methodology described 
previously12, with the exception that the screened Coulomb kernel w D

00
2  is used instead of the smeared Coulomb 

potential applied in refs 12, 13 and 15. All TB band structures are parametrized to yield band gaps ensuring the 
correct spectral positions of the fundamental exciton features taken from experiments, hence, we do not perform 
an explicit GW calculation in the present work. Instead, we take the TB bands as a model for the corresponding 
GW energies, c.f. Table 2. Spin-orbit coupling is included only for MoS2. For MoS2 and Si we apply an sp3d5 basis 
as described in refs 12 and 23, respectively. The Si (111) surface is described using a slab geometry with one face 
H-terminated, leaving only a single set of surface states in the band gap. Note that in order to achieve the band gap 
listed in Table 2, the onsite energies of the top buckled surface atoms were adjusted by ±​ 15%. This is necessary to 
take into account charge redistribution on the reconstructed atoms and the reduced screening of the surface 
region (suggesting a larger GW correction compared to bulk for states localized there), even though the TB 
parameters23 were fitted to a GW band structure. The MoS2 parameters are fitted to a DFT band structure, hence, 
we apply a scissor correction in that case. For hBN, a π-electron pz basis is sufficient. We apply the same model as 
in ref. 13, with the exception that we use onsite energies of ±​ 2.4 eV for B and N sites, respectively, and a scissor 
correction of 3.2 eV.

In all cases, we apply dense k-grids in excess of 100 ×​ 100 k-points using a recursive Lanczos/Haydock 
scheme12, converging the exciton binding energies to the meV level and smearing out the contribution from the 
individual k-points in the continuum part of the spectrum. For hBN and Si (111), we include the valence and 
conduction band closest to the Fermi level, while for MoS2 we include the four lowest conduction bands and four 
highest valence bands. Where nothing else is noted, we apply a phenomenological broadening of 30 meV.

We compare exciton energies Eb generated using our BSE approach with results calculated using the well-known 
and much simpler 2D Wannier exciton model (see e.g. refs 4 and 6):  µ ρ ψ ρ ψ ρ− ∇ − =ρ e w E[ /2 ( )] ( ) ( )D

b
2 2 2 2

exc exc . 
We apply a variational ansatz for the exciton wave function ψ ρ π λ λρ= −( ) /2 exp[ ]exc , and determine the 
parameter λ by minimizing the energy Eb. The reduced electron-hole mass μ is extracted from the near-parabolic 
dispersion of the TB bands near the K-points of the Brillouin zone, and is 0.24me for MoS2 and 0.36me for hBN, with 

Figure 1.  (a) Real space electron-hole interaction potentials. The results denoted “2D slab”, “Linear 2D”, “Strict 
2D” and “Keldysh” are screened using Eqs 12, 13, 14 and 15, respectively. (b) Schematic representation of the 
slab geometry and its strict 2D limit.

MoS2 hBN Si(111)

Binding energy

Present 0.44 1.90 0.20

Ab initio 0.1522, 0.434, 
0.6525 1.832, 2.054, 2.120 0.2618

GW and TB gaps

Present 2.42 8.00 0.66

Ab initio 2.4833, 2.725 7.932, 7.420 0.6217, 0.6918

Table 2.   Comparison of exciton binding energies |Eb| and GW band gaps. All values are in eV. Note, only 
exciton binding energies are actually calculated in the present work. Appropriate TB band gaps are ensured 
by using TB parameters which ensure agreement between experimental and theoretical exciton features. 
Superscripts indicate references.
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me the free-electron mass. The screened potential in real space w2D(ρ) is taken as the inverse Fourier transform of 
Eq. 10 either (i) keeping d finite and using Eq. 12 for screening, or (ii) taking the d →​ 0 limit and applying Eq. 15 for 
screening. The latter case results in the Keldysh potential19 ρ ρ ρ= Σ − Σw r r r( ) [ ( /2 ) ( /2 )]/8D2

0 0 0 0 0 0 0 0H Y ε . The 
screening length is χ κ= = −r d/2 [ 1]/2S

0 0 , while 0  and 0 indicate the Struve function and Bessel function of 
the second kind, respectively. Note, in deriving the Keldysh potential, we apply the strict d →​ 0 limit Eq. 14 for the 
2D dielectric function, instead of the q-linearised expression for finite d Eq. 13, which would also yield a 
Keldysh-type potential. In fact, the latter approach was shown in ref. 4 to yield good results in the absence of sub-
strate. However, for substrate screening κa >​ κ, the linearised dielectric function in Eq. 13 may have a negative slope 
in q-space, as briefly mentioned before, and which can be verified from the hBN results in Fig. 2(a). This leads to 
un-physical results due to negative screening at large q.

Results and Discussion
We consider initially the effective 2D screening displayed in Fig. 2(a), and note the good overall quantitative 
agreement between results derived using Eq. 12, and those calculated using more complicated quantum-based 
approaches4,5. In fact, the overall agreement is surprising given the simplicity of Eqs 1 and 12 when compared to 
the full numerical problem of calculating RPA dielectric functions, correctly taking local-field effects into account, 
avoiding spurious Coulomb interaction between artifically repeated images, etc. Hence, the results of ref. 4  
constitute a more numerically taxing problem, albeit with the advantages of being derived from ab initio theory. 
Equation 12, on the other hand, represents a model expression which can be used to extrapolate results very sim-
ilar to 2D RPA calculations, in the same way the original 3D expression Eq. 1 is used for bulk semiconductors9,10. 
The significant qualitative differences between free-standing 2D and 3D screening functions for small q have been 
discussed exhaustively before3,4, however, the effects of including screening from a supporting substrate (chosen 
as Si in Fig. 2(a)) are clearly seen to impact the small-q range, which is important for excitonic optical properties5.

In Fig. 2(b), we include optical sheet conductivities in units of σ = e /40
2 , calculated both in the independent 

particle approximation (IPA) and including excitons through the BSE screened using the full 2D slab model 
Eq. 12. All excitonic spectra are in excellent agreement with previously published theoretical work and experi-
mental findings.

In Table 2, we compare the magnitude of the exciton binding energies |Eb| calculated here with ab initio results 
from other sources. We note a very good quantitative agreement, which suggests a high degree of transferability 
of the model dielectric function applied in this work. The excitonic optical spectrum of MoS2 has been measured 
experimentally in e.g. refs 21 and 24, and our model reproduces the pronounced exciton peak structure nicely. 

Figure 2.  (a) The effective screening for three different 2D semiconductors. We include results with the 
three materials deposited on a Si substrate and ab initio results from ref. 5 for comparison. (b) Optical sheet 
conductivity for the three materials considered, calculated both including excitons (BSE), and neglecting 
many-body effects in the independent particle approximation (IPA). For MoS2 and Si(111), we compare 
with experimental differential reflectance spectra, which are directly proportional to the calculated sheet 
conductivities. These experimental results are from refs 24 and 27, respectively. For hBN, we compare with the 
absorption spectra of monolayer hBN flakes suspended in solution from ref. 26. Note, all experimental spectra 
are scaled for comparison with theory.
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One exception is the splitting of the peak near 3 eV, which is not observed experimentally. This discrepancy 
may be explained by electron-phonon interaction, essentially resulting in a frequency dependent broadening25. 
Similarly, the hBN spectrum is dominated by a single intense peak, in good agreement with experiments26. A 
surface exciton peak has also been observed27 for Si (111) 2 ×​ 1, with a line shape very similar to Fig. 2(b) and 
peak position at 0.47 eV.

Having established the reliability of the model dielectric function, we proceed to study the effects of various 
substrates upon noting that the present model can be expected to work only for cases where the states of the 2D 
semiconductor hybridizes weakly with the substrate. We consider the case of hBN and MoS2 supported by various 
materials, hence, one half-plane is vacuum while the other is occupied by a material of dielectric constant q

a  mod-
elled using Eq. 1. However, top-substrates can easily be incorporated, allowing for the simulation of embedded 2D 
materials. Also, we find the q-dependence of q

a and q
b to have negligible influence on the effective 2D screening. 

Hence, although this complication is included in the present paper, it may safely be neglected in future work, 
setting  κ=q

s
s.

In Fig. 3, we display optical spectra for various substrates. In all cases, we observe a dramatic reduction of the 
exciton binding energy |Eb| with increasing substrate screening κa, as may also be verified from Fig. 4. However, 
we expect the GW gap Eg to decrease by an almost identical value, similarly to what is typically observed from 
ab initio calculations, such as ref. 28. Hence, we opt to displace the photon energy axis by the energy of the first 
exciton peak Eexc =​ Eg −​ |Eb|. For hBN, we clearly observe the exciton Rydberg series in the energy interval Eexc to 
Eg. Although the overall spectral structure is conserved with changing substrate, i.e. the dominating main absorp-
tion peak is roughly one order of magnitude larger than subsequent peaks, we see that the exciton fine-structure 
is highly dependent on substrate screening, and almost completely quenched for κa >​ 10.

For MoS2, the main effect of increasing substrate screening is to reduce the intensity of the main exciton fea-
tures, and to blue-shift the peaks near 1 eV on the displaced energy axis. Hence, the most intense peak at 0.9 eV 
for free-standing MoS2 is found at 0.97 eV for the case of a Si substrate. These are attributes which may be measur-
able experimentally. Furthermore, for substrates with smaller dielectric constants κa <​ 3, an exciton fine-structure 
is observed in the energy range between Eexc and Eg. However, with increasing substrate screening, the Rydberg 
series is compressed towards the band gap, giving rise to a slight bulge in the optical spectrum just below Eg. 
Hence, for a GaAs substrate, this bulge is seen as a shoulder on the low-energy side of the second exciton peak. 
Interestingly, for moderate screening κa >​ 2, the Rydberg series arising from the exciton of second-lowest energy 
gives rise to a bulge in the continuum part of the spectrum. For a GaN substrate, this is observed near 0.2 eV on 
the displaced energy axis.

In Fig. 4, we compare BSE exciton binding energies (squares and triangles) to results generated using the 
much simpler 2D Wannier model, which describes either an exciton confined to a homogeneous slab of finite 
width screened using Eq. 12 (full lines), or a strict 2D exciton screened using the Keldysh model Eq. 15 (dashed 

Figure 3.  Excitonic optical response of MoS2 (a) and monolayer hBN (b) deposited on the various substrates 
indicated on the figures. κa (in-plane) values are from ref. 4 (MoS2, hBN), ref. 29 (Si, GaAs, AlP), ref. 30 (GaN) 
and ref. 31 (SiO2). On the figure, we also indicate the average valence charge densities na used to model the 
q-dependence of the substrate dielectric function in Eq. 1. Note, the energy axis is displaced by the exciton 
binding energy. Hence, the locations of the band gaps on the displaced energy axis correspond to exciton 
binding energies, and are indicated by the triangles. To resolve the exciton fine-structure, the k-point sampling 
is increased to 200 ×​ 200 for hBN and 150 ×​ 150 for MoS2. Additionally, the phenomenological broadening is 
reduced to 10 meV. Note, the results for hBN are displayed using a logarithmic y-axis due to the dominating 
main absorption peak, and the y-limits of all figures are identical to the results for vacuum.
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lines). All three models display the same qualitative behaviour, i.e. a decreasing binding energy with increas-
ing substrate screening. However, a few differences are immediately apparent. For a free-standing film, the slab 
and Keldysh models are in fair agreement in overestimating the exciton binding energies, compared to the BSE. 
This trend is similar to what has been reported before4. We have tested our BSE approach upon substituting the 
TB energies with parabolic bands extrapolated from the nearest K-point of the Brillouin zone, and we find the 
resulting binding energies to agree well with the 2D Wannier results. Hence, we attribute the overestimation of 
the binding energies in the slab and Keldysh exciton models to the effective-mass approximation inherent to 
these. Upon increasing the substrate screening, binding energies predicted using the strict 2D Keldysh potential 
decrease more rapidly than predicted by both the finite slab model and the BSE. This trend is especially pro-
nounced when the substrate dielectric constant κa becomes larger than the 2D semiconductor dielectric constant 
κ, which is most pronounced for the case of hBN with κ =​ 4.9. Hence, we interpret this as a slight over-estimation 
of substrate screening in the Keldysh model, as might be expected when taking the 2D limit, thereby reducing the 
exciton-substrate effective distance to zero.

Conclusion
In conclusion, we have demonstrated how an analytical model dielectric function may be applied as a reliable 
tool for predicting the excitonic optical properties of 2D semiconductors. Thus, the calculation of numerically 
taxing RPA response functions, which is a typical ingredient in exciton calculations, may be sidestepped. This 
approach was demonstrated to be particularly effective in the framework of tight-binding, where under-screening 
due to incomplete basis sets can yield unreliable exciton binding energies. We predict substrate screening to gen-
erally have a large impact on the exciton binding energy of supported 2D semiconductors. The exciton Rydberg 
series, in particular, is strongly suppressed with increasing substrate screening. The popular 2D Wannier model is 
demonstrated to yield results in qualitative agreement with the BSE approach.
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