Table 10 Comparison of MCInc/MCIc classification accuracy in literature.

From: Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer’s disease

Method

Subjects (MCInc/MCIc)

Data source

Features

Classifier

ACC (%)

SEN (%)

SPE (%)

Korolev et al.41

120/139 (baseline visit)

Risk factors, cognitive and functional assessments, MRI, plasma proteomic data

ROI-wise

Probabilistic multiple kernel learning

80.0

83.0

76.0

Tang et al.39

87/135 (baseline visit)

MRI

Vertex-based

LDA

75.0

77.0

71.0

Liu et al.30

128/ 76 (baseline visit)

MRI

Voxel-wise

Hierarchical ensemble

64.8

22.2

89.6

Suk et al.16

128/76 (baseline visit)

MRI, PET

Voxel-wise

Hierarchical ensemble

75.9

48.0

95.2

Wee et al.40

111/89 (baseline visit)

MRI

Vertex-based

SVM

75.1

63.5

84.4

Zhang et al.3

50/35 (longitudinal data)

MRI, PET, cognitive scores

ROI-wise

SVM

78.4

79.0

78.0

Proposed method

61/70 (longitudinal data)

MRI

Voxel-wise

Hierarchical ensemble

79.4

86.5

78.2