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Long-term growth of temperate
broadleaved forests no longer
benefits soil C accumulation
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Published: 08 February 2017 Itis )Nl_dely recognized that the long-term growth of forests benefits biomass carb.on ©) sequest_ratlon,
but it is not known whether the long-term growth of forests would also benefit soil C sequestration.
We selected 79 representative soil profiles and investigated the influence of the forest stand age on
the soil C dynamics of three soil layers (0-10, 10-20 and 20-30 cm) in temperate broadleaved forests in
East China. The results suggest that the soil C density in temperature broadleaved forests significantly
changes with the stand age, following a convex parabolic curve. At an early stand age, the soil C density
usually increases, reaching its peak value at a pre-mature stand age (approximately 50 years old). At
later stand ages, the soil C density usually decreases. Therefore, our results reveal a turning pointin
the soil C density at a pre-mature stand age. The long-term growth of temperate broadleaved forests
after pre-mature stand age no longer benefits soil C accumulation, probably promotes topsoil C loss. In
addition, we found that the soil C density in the upper soil layer usually changes with the forest stand
development more significantly than that in deeper soil layers.

Soil carbon (C) in forests has attracted much attention in recent years because its stability contributes to the mit-
igation of climate change'?. It was discovered that the soil C pool in temperate forests appears to be stable under
disturbances, such as logging, wind storms, and invasive species>*. It is widely recognized that the soil C pool in
forests varies dynamically with the stand age>®, but there are disagreements on how this occurs, leaving forest
managers with uncertainty on how to best update forests for optimal C sequestration in the soil.

: Rothstein et al. (2004) observed a weak decline in the surface soil C content with the stand age in Michigan

. jack pine forests”. On the contrary, Fonseca et al. (2011) discovered that the soil C increased by 1.1 Mg ha™!
yr~! (1 Mg =10°g) over the stand age range of 4~20 years in secondary tropical forests in Costa Rica®. Chen
et al. (2013) discovered that the soil C pool in a Chinese fir plantation declined at young stand ages and then
re-accumulated C at the stand ages of 16 ~ 21 years®. Shi & Cui (2010) argued, by summarizing 70 publications,
that the highest soil C accumulation rate occurred at stand ages of 10-20 years old'°. By summarizing more than
100 publications, Yang et al. (2011) argued that the soil C pool did not undergo significant changes during forest
stand development in most studies'!. Therefore, it remains uncertain how the soil C changes in the long-term
growth process of forests.

In China, secondary forests have expanded due to reforestation over the past half century. Seven national-scale
forest investigations have been performed since the 1950 s, but focused only on the timber volume and forest
C biomass, without considering the soil C'2. National-scale soil investigations have also been performed, but
unfortunately, they focused on the soil C in different soil types rather than for vegetation types'*~'%. Some studies
estimated the soil C pool in Chinese forests based on process-based BIOME models'®, but could not resolve the
complicated relationship between the soil C and forest stand age. Thus, it is necessary to elucidate how the soil C
changes with the forest stand age to provide scientific evidence for forest management.
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Figure 1. Soil C density change with actual stand age in soil layers (0-30 cm) in temperate broadleaved
forests in Anhui Province, East China.
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Figure 2. Soil C density change with actual stand age in three soil layers (0-10, 10-20, 20-30 cm) in
temperate broadleaved forests in Anhui Province, East China.

In this paper, we investigated 79 representative soil profiles in temperate broadleaved forests in eastern China.
The objectives were to uncover the relationship between the soil C sequestration and the stand age of temperate
broadleaved forests to improve forest management.

Results

Change trend of soil C density with stand age. Regardless of the broadleaved tree species, we use the
actual forest stand age as the independent variable to examine how the soil C density changes in three soil lay-
ers (0-10, 10-20, 20-30 cm) in temperate broadleaved forests. When the three soil layers were taken as a unit,
the results show that the soil C density is significantly correlated with the forest stand age. The soil C density
changes with the stand age following a convex parabolic curve (R*=0.3273), not a straight line. The soil C density
increases at a young stand age, reaches its maximum carbon storage at an average age of approximately 50 years,
and then gradually declines with the increasing stand age (Fig. 1). Therefore, the results indicate that there exists
a turning point of soil C density in temperate broadleaved forests during stand age development. The soil acts as
a C sink following forest establishment, but switches to a C source at approximately 50 years old, implying that
the long-term growth of temperate broadleaved forests after 50 years no longer benefits soil C accumulation, but
rather contributes to C loss from the soil.

When comparing the three soil layers, a significant change in the soil C density with the forest stand age
following a parabolic curve was observed (R?=0.4309) in the upper soil layer (0-10 cm). In the soil layer of
10-20 cm, the soil C density also varied in a parabolic curve with the forest stand age (R*=0.2346), but the peak
of the parabolic curve became lower. In the deeper soil layer of 20-30 cm, the peak of the parabolic curve disap-
peared (R*=0.0193), as the soil C density changed only slightly compared to in the upper soil layers (Fig. 2). As
aresult, the soil C in the upper layers is more sensitive to the forest stand age than that in the lower soil layers.

Average change rate of soil C density with stand age class. To quantify the soil C dynamics with
the stand age class, we divided the entire growth sequence of temperate broadleaved forests into five stand age
classes (young, middle, pre-mature, mature and over-mature) (Table 1). When the three soil layers (0-10, 10-20,
20-30 cm) were taken into account as a whole, the results suggest that the soil C density reaches its peak value
(approximately 85.6 Mg C/ha) at the pre-mature stand age. On average, the soil C density increased at a rate of
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Young (0-20] 12 18 21.0+12.5 16.3+10.6 15.8+11.1
Middle (20-40] 33 26 42.0+11.5 243482 12.7+4.4
Pre-mature (40-60] 52 20 46.71+13.0 27.0+11.1 13.3+3.7
Mature (60-80] 74 11 37.5+7.7 22947.0 14.6+7.2
Over mature (80-100] 91 3 30.8+7.4 16.9+0.9 84+1.1

Table 1. Soil C density at a depth of 0-30 cm in temperate broadleaved forests. Note: stand ages refer to the
standards of the “Forest Resource Statistics of China” (Zhang et al.'®).
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Figure 3. Soil C dynamics with stand age class in three soil layers (0-10, 10-20, 20-30 cm) in temperate
broadleaved forests.

0.813 Mg C/ha per year prior to the pre-mature stand age. Subsequently, it declined at a rate of 0.74 Mg C/ha
per year after the pre-mature stand age and to 56.0 Mg C/ha at the over-mature stand age (average 91 years old).
Therefore, the quantitative results indicate that the pre-mature stand age (average 52 years old) is a turning point
in the soil C dynamics. The soil C accumulated at a rate of 0.813 Mg C/ha per year before the turning point and
then exhibited a loss of 0.74 Mg C/ha per year after the turning point (Fig. 3).

Comparing the three soil layers, the upper soil layer (0-10 cm) showed the most significant change in soil C
density, with an increase of 0.643 Mg C/ha per year from young to pre-mature and a decrease of 0.398 Mg C/ha
per year from pre-mature to over-mature. The middle soil layer (10-20 cm) showed an increase of 0.268 Mg C/ha
per year from young to pre-mature and a decrease of 0.253 Mg C/ha per year from pre-mature to over-mature.
The deepest soil layer (20-30 cm) showed a slightly fluctuating soil C density without any significant change over
the entire growth sequence.

Discussion

Our results demonstrate that the soil C density in temperate broadleaved forest changes with the stand age fol-
lowing a convex parabolic curve, and there exists a turning point with a single peak in the soil C accumulation
at approximately 50 years old (Figs 1, 2 and 3). However, the results only show a general (significant single-peak
curve) change trend of soil C density, but omits minor changes along the successional process since the data is not
enough to identify the minor changes. The soil C density probably changes following a multi-peak curve with no
more than one turning point during the entire forest stand age, as some studies reported that the soil C initially
decreased or increased slowly for the first decade after afforestation and then began to accumulate quickly with
the stand age. The multi-peak curve of soil C density usually exist under the precondition of afforestation. For
example, Paul et al. (2002) synthesised available world-wide information on changes in soil C after afforestation,
and argued that soil C in surface soil (<10 or <30 cm depth) initially declines during the first 5 years after estab-
lishing a plantation but recovers by the age of 30 years'®. The initial decline of soil C in Paul ef al. (2002) came
from the average data in the 43 published or unpublished studies, so the decline is not significant since the data
are highly variable, with soil C either increasing or decreasing in young (<10 year) forest stands. Li et al. (2011)
observed the total mineral soil C initially appeared to decline at the early stand age, but recovered by the stand age
of 35 years for coniferous plantation forest with Korean Pine (Pinus koraiensis). It is a pity that the natural change
of soil C is not credible after 35-year-old stand because the soil C suffered from disturbance greatly from human,
such as thinning treatment to the35- and 51-year-old stands'’. Hiltbrunner et al. (2013) examined the effects of
afforestation with Norway spruce (Picea abies L.) in a grazed subalpine pasture in Switzerland on soil organic
carbon (SOC), and discovered that soil C stock decreased after tree establishment, reaching a minimum 40-45
years after afforestation, and increased thereafter'®. Barcena et al. (2014) analyzed the changes in SOC stocks
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Figure 4. Multi-peak curve of topsoil C density change with forest stand age according to our study and
other studies.

at the 0-30 cm soil layer following afforestation in Northern Europe by a meta-analysis, revealed that SOC loss
generally for barren, cropland, heathland and grass-land at the initial phase following afforestation (0-30 years).
The detectable gains in SOC stocks appear in later stages (>>30 years), especially for afforestation of croplands®.
Yu et al.? investigated the soil C in four Chinese fir (Cunninghamia lanceolata Hook) plantations (Chinese fir was
planted in clear-cut sites in natural broad-leaved forest) in Jiangxi Province, south China, discovered that soil C
density at the depth of 0-20 cm declined before 16 years, but increased after 16 years, since soil C density declined
from 35.98 Mg-ha! in the 7-year plantation to 30.12 Mg-ha™! in the 16-year plantation, and then increased after
16 years old?. Therefore, we can speculate that soil C density probably changes following a multi-peak curve, and
another turning point of the soil C density may exist in the early decades of afforestation, besides the large turning
point at approximately 50 years old (Fig. 4).

In the later stage of forest development, many reports indicate that old forests are expected to maintain their
biomass accumulation for a long time through the development of a multilayer canopy structure?!, but this does
not mean that the soil C can continue to increase as long as the biomass accumulates. Our results show that
old-growth forest could not sustain the soil C increase due to the decreasing soil C density after the pre-mature
stand age (average stand age 50 years old). However, there seems to be some controversy on this point. It is con-
ventionally accepted that the soil C levels in old-growth forests are in a steady state?!~?2. However, Zhou et al.
(2006) reported that soils in the top 20-cm soil layer in preserved old-growth forests (age > 400 years) in southern
China accumulated C significantly at an unexpectedly high rate from 1979 to 2003%. Li & Liu (2014) argued that
an old forest (38-56 y) was able to continuously accumulate C in the soil in China’s Loess Plateau, even when the
biomass significantly decreased®.

These different opinions could be partly attributed to the different definitions of “old forest” with tree spe-
cies and environment spatial variability, as there is currently no recognized definition. For example, a stand age
of 38-56 years old in the study of Li & Liu (2014) was regarded as old forest?*, equivalent to the pre-mature
stands age (40-60 years old) in our study. It is likely that tree species and environment spatial variability are
the leading causes of the different opinions, as different environments and tree species can affect the carbon
accumulation-and-release processes'?*-?’. The synergistic effects of many factors should be further explored to
uncover the complex mechanism of soil C dynamics*-3!.

Conclusions

Our results show that soil C in temperature broadleaved forests significantly changes with stand age. Generally,
it exhibits a change trend in the shape of a convex parabolic curve with stand age, regardless of the tree species.
At the early stage of forest development, the soil C density usually increases, and it reaches its peak value at
the pre-mature stand age (approximately 50 years old). At later stages of forest development, the soil C density
usually decreases. This phenomenon provides strong evidence that there is a turning point of the soil C density
in temperate broadleaved forests at the pre-mature stand age, when the soil switches from being a net C sink to
a net C source. Therefore, we drew the conclusion that the long-term growth of temperate broadleaved forests
after pre-mature stand age no longer benefits soil C accumulation. Our study also confirmed that the soil C in the
upper layers is more sensitive to forest stand age than that of the lower soil layers, as the soil C density in the upper
soil layers usually changes significantly with the forest stand development.

Materials and Methods

Study area. The study area covers approximately 139,000 km? in the Anhui Province (114°51’-119°36'E,
29°26/-34°37'N) of East China (Fig. 5). The Asian monsoon circulation creates a temperate continental monsoon
climate with an annual average temperature of 14-17 °C and an annual precipitation of 800-1800 mm. The soil
type is yellow brown soil*2. Three mountain ranges (Dabie, Jiuvhua and Huang Mountains) lie in the southwestern
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Figure 5. Location of study area and sampling plots of 79 representative soil profiles in temperate
broadleaved forests in Anhui Province, East China (The map was generated using ArcGIS for Desktop 10.2,
http://www.esri.com/software/arcgis).

and southern regions (Fig. 5) and are covered with temperate and subtropical forests. The dominant forest types
are temperate deciduous broadleaved forests, coniferous forests, and mixed forests.

In recent decades, large-scale deforestation has been curbed, and reforestation projects have been carried out,
providing an opportunity to resume normal forest development®. Forest managers also allow people to update
some forests to obtain timber for money. Therefore, the study area contains various forests with stand ages rang-
ing from 0 to 100 years. However, it is unclear what updating schedule for the forest is the most favourable for soil
C sequestration.

Sampling sites (plots). To avoid the effect of the spatial heterogeneity of sampling sites on SOC, we did our
utmost to select coincident sampling sites (plots) in vegetation composition, soil type, and the same development
process. All the sampling sites must have typical temperate broadleaved forest which is determined by climatic
zones, though there are other forests, such as coniferous forests, conifer and broadleaf mixed forests. To avoid of
human disturbance, all the sampling sites were selected in protecting natural forests to ensure a natural growth
process. Young broadleaved forests being selected should have similar land use process because SOC in young
forests suffer more effect from previous land use. We didn’t consider the young forests which land use type had
been changed greatly by human. Thus, almost all forest vegetation in sampling sites belongs to secondary succes-
sional vegetation under the protection of human beings.

We selected the typical forests for every stand ages (young, middle, pre-mature, mature, over-mature) accord-
ing to the natural succession of temperate broadleaved forest, so there is a slightly inconsistent in vegetation (spe-
cies) composition for different stand age due to the natural succession. The vegetation composition for different
stand ages is listed as follows (Table 2).

The soil in study area is classified as yellow brown soil zone according to “Map of Soil Regionalization of
China”**. The sampling sites in our study ensured a typical yellow brown soil, and other soil types were avoided.

Generally, the sampling sites are coincident approximately in vegetation composition, soil type and develop-
ment process, in spite of existing spatial heterogeneity more or less.

Soil sampling. To examine the dynamics of the soil C with stand age, 79 soil profiles of sampling sites were
investigated in representative temperate broadleaved forests in September of both 2011 and 2012 (Fig. 5). The
actual stand age of each forest type was recorded by visiting farmers and forest management staff. The investiga-
tion focused on soil carbon density in the 0-30 cm soil layer, since soil carbon in the layer accounts for the major-
ity of the soil profile 0-100 cm, and is sensitive to forest stand ages more than that in deeper soil layers. Vertical
soil profiles were dug in the sampling plots, and soil samples were collected from three soil layers (0-10, 10-20,
20-30cm) using a ring knife (volume of 100 cm?) for measuring the soil bulk density and a spade for measuring
the soil C content. Soil samples from the surface soil layer (0-10cm) included the forest floor (O horizons, i.e.,
the organic horizon), but surface litter was not included in the calculation of the soil C. In addition, the relevant
environmental information for each sampling plot was recorded, such as the geographical location with latitude
and longitude, forest type and stand age.

Data analysis. The soil samples collected with the ring knife were used to measure the soil bulk density by
the drying method in the laboratory. The soil samples collected with the spade were air-dried, ground using a
mortar, and passed through a 2-mm sieve to remove all roots and stones. Finally, chemical analyses were per-
formed to measure the soil C concentration by dry combustion using an elemental analyser (vario MACRO cube,
Elementar, Germany).
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Quercusglandulifera va. brevipetiolata, Quercusglandl{.ltfem var. brevtpetzo{at_a, Quercusglandtfhfem var. brevrpetw‘lafa, Quercusglanfilulz era
e : . . Cyclobalanopsisglauca, Qercusacutissima, | Cyclobalanopsisglauca,Qercusacutissima, | var. brevipetiolata,
Treelayer | Pistaciachinensis,Broussonetiapapyrifera, . > . . > . .
; Castanopsiseyrei, Castanopsissclerophlla, | Castanopsiseyrei, Castanopsissclerophlla, | Cyclobalanopsisglauca,
Sorbushemsleyi L . . £ . .
Fraxinusinsularis Platycaryastrobilacea Qercusacutissima, Castanopsiseyrei
Rhododendron simsii, Lespedeza viatorum, Rhododendron simsii, Lespedeza bicolor, Rhododendron simsii, Lespedeza . .
. Lorpetalumchinense, Linderaglauca, . Pleioblastusamarus, Camellia
Shrub layer | Linderareflexa, Zanthoxylumarmatum, o ; Formosa,Lorpetalumchinense, ;
. e Glochidionpuberum,Camellia fraternal, X fraternal, Linderaglauca
RhizomaSmilacis Camelliafraterna
Rhamnusglobosa
Dryopterischinensis, e Dryopterischinensis, Dryopterischinensis, Woodwardia
Carextristachya,Oplismenusundulatifolius, o > L. . L. . . . i .
L7 . > | Woodwardia japonica, Dryopterischinensis, Woodwardia japonica, | japonica, Carexbreviculmis,
Arthraxonhispidus, Commelinabengalensis, : . e ) . T . v
Herb layer . ) . Carextristachya,Oplismenusundulatifolius, | Carextristachya, Opli tifolius, | Opli tifolius
Carpesiumabrotanoides, Artemisia . . ; . :
R . . Rhizomaimperata, Aster ageratoides, Lindera aggregate, Phaenospermaglobosa Lophatherumgracile,
lavandulaefolia, Leonurus japonicas, . - .
; by Antenoronfiliforme, Viciaamoenafisch Linderaaggregata
Viola concordifolia

Table 2. The vegetation composition in sampling sites for different stand ages of temperate broadleaved
forests in Anhui Province.

For these soil profiles, we calculated the soil C density (D) of the three soil layers of 0-10, 10-20 and 20-30cm
using Equation (1),

D=3%"" (D; x H; x C), )
where D is the soil C density (10°gC/ha.), D; is the bulk density (g/cm?), H; is the soil depth (cm), C; is the soil C
concentration (%o), and i represents the three soil layers.
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