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Published: 28 March 2017 . Weinvestigate apalytlcally_, numerically, .am_i experimentally the Iow-Ios.s supermode. p_ropagatlon in
. acoupled acoustic waveguide complex within a broadband. The waveguide complex is implemented
. with air channels coupled via an ultrathin metafluid layer. We analytically derive the field distribution
. ofincident sound needed for producing acoustic supermodes, and verify the periodically revival
propagation in coupled waveguide systems numerically and experimentally. We find out that the
supermode wavelength becomes longer for higher mode order or lower frequency. We have also
demonstrated the robust propagation of supermodes in broadband. Our scheme can in principle be
extended to three dimensions and the ultrasound regime with simplicity and may promote applications
of high-fidelity signal transfer in complicated acoustic networks.

Anomalous manipulations of acoustic energy flow have received many attentions during the past decades, such as
negative refraction/reflection’, collimation®®, super-resolution imaging®'!, cloaking'?~*¢, rainbow trapping'”~,
beam acceleration?*-22, and topological transportation®-2, etc. The recent advances in acoustical metamaterials
and metasurfaces provide a broad platform which enables those intriguing phenomena to be realized in exper-
iments?*3°. Due to diffraction, acoustic devices for anomalous wave-steering in free space are inevitably to be
large in size. Therefore, a more promising candidate, viz. acoustic waveguide networks, is proposed for device
integration, where the size may markedly decrease due to the lack of cut-off in rigid channels!®!"->>%’. Previous
works have shown that sound propagation in waveguide networks can be much more intricate than that in bulk
media®>?’. For example, the acoustic waves propagating in one waveguide may easily spread to the whole system
through couplings. In practice, such coupling-induced diffraction is undesirable, since the information carried by
acoustic signals will be smeared or considerably modified by diffraction during the propagation. It thus should be
meaningful, both in physics and in engineering, to explore the possibility to realize non-diffracting acoustic wave
propagation for high-fidelity signal transfer in integrated networks.

In this paper, we propose to employ supermodes to implement non-diffracting propagation in one type of
acoustic networks, viz., an array of coupled waveguides. The resulting device simply consists of five air channels
coupled via four gratings. We rigorously derive the desired field distribution of incident waves for producing
acoustic supermodes. Remarkably, the supermode propagations are featured with broadband stability and low
loss, since the device has no resonant structures with frequency-dependent responses. We further demonstrate
those intriguing properties of acoustic supermodes through proof-of-concept experiments. With the simple
design and fabrication, our proposal can be in principle extended to three dimensions and the ultrasound regime,
and make a significant step towards the application of high-fidelity transportation of broadband acoustic signals
in integrated acoustic networks.

Results
We start from investigating the acoustic supermode in an array of N coupled waveguides based on the
coupled-mode theory, with only the nearest-neighbor coupling being considered?!. The scalar wave equation for
1 0%

2

sound takes the form of V?p — S 0. As shown in Fig. 1(a), we investigate a two-dimensional waveguide
¢t ot
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Figure 1. Schematic and Photograph of an acoustic waveguide array. (a) Schematic of the studied acoustic
waveguide array, where five air channels are segregated by four gratings. The red arrows show the path of
incident sound. Inset: Structure details of channels and gratings. The gray and white regions represent air and
rigid metal, respectively. (b) Photograph of the fabricated acoustic waveguide array. Inset: machined inside
channels, inside gratings, and measurement holes. Scale bar, 5cm.

complex in x-z plane. Here, the pressure and speed of sound are expressed into p = p(x, z)e™ andc = w/k(x, z),

where k(x, z) represents the wave number. From the aforementioned equations, we can deduce the governing
equation V2p + k(x, z)’p = 0. For a linear and scalar system, we separate the variables to have
p(x, z) = p(x)p(z)and K (x, z) = kf + (3%, where Jis the propagation constant along z direction. It should be
pointed out that 3> k(x, y) for a guiding mode. Thus, k, should be imaginary, indicating that the field along
x direction is evanescent. Substituting p(x, z) = p(x)p(z) and K(x,z) = kf + 2 into the governing equation,
we will obtain

{ P ) +k2p(x)}p(z) + {ap(z’ +ﬂp(z)}P(x) —o, o

which further leads to o’ ; @ 4 5% (z) = 0and p(x, z) = F(x)e —ite 4 p,- Here, p, is a constant that could be
chosen to be zero by setting a proper coordinate origin, and F(x) is the mode profile along x direction. For an
array of N coupled waveguides, F(x) can be expressed into a discrete form of F(x) = ' | A;p,, with A, being the
weight of a propagating mode in one waveguide. Therefore, the mode profile of the whole system can be written
into

N .
p =Y Ape
2 b )

In this work, we only consider the nearest-neighbor coupling (the tight-binding model) and set all waveguides
identical and equally spaced. Substituting Eq. (2) into the governing equation, we can finally derive the matrix

kO2 + K C 0 0 A A,
C kl+hry C - 0 A, A,
2
0 C ki + Kz - 0 Ay | =07 Ay
0 0 C ki + Ky An An (3)

where k, is the wave number in free space, C is the coupling coeflicient between nearest neighbor waveguides, and

; is the self-coupling coefficient for the ith wavegulde Due to different boundary conditions, the self-coupling
coeff1c1ents Ky kyy do not equal to &, (i = 2, 3, ..., N — 1). Therefore, we may define x, = 1}, kyy>
Ky = g K3z - Ky_1n_p ad 8k = K}, — K,. After numerous mathematical deductions, the eigenvalues and
eigenvectors of Eq. (3) are derived to be ref. 32

= [k + K, + 2C cos mr + O(6k),
/Bm J 0 b N+1 ( )
A" = 2 sin mim + O(6k),
N+1 N+1 (4)

SCIENTIFIC REPORTS | 7:45603 | DOI: 10.1038/srep45603 2



www.nature.com/scientificreports/

(a) Input

(1323 )2

i

Qutput
—

(b) Input

(1101 -1 Output

I TnnnsETnsazarad
RS

(c) (1010 TN -
"'E!HHH!!HHHF!HHH!"‘ i
mm SRR "'HHE!EE!PBEE'BE&HEE“ :
. ---iiﬂiiﬁ%gziggilihiiii-m ":EEEE&?-????&E&E*" g
I TTozmme e EETETISEIEE
0 O L1 3- ! i
:::2!!!!!!!2!!!:!:: ...u.‘h.‘l. n--a—--‘.‘.‘

Propagation Distance (cm)

Propagatlon Dlstance (cm)

Figure 2. Pressure fields of different propagating modes. (a—e) Normalized pressure field distributions of five
different supermodes at m =1, 2, 3, 4, 5, respectively. The weight factors of all air channels for each supermode
are appended on top of the corresponding panels. (f) Normalized pressure field distribution when the input
does not form a supermode. The operation frequency f=4kHz.

where m is the mode order, and / is the waveguide number. In Eq. (4), 3,, also represents the propagation constant
of m-ordered supermode. It is interesting that the mode intensity in an air channel will be zero on condition that
ml/(N+ 1) is an integer, and the mode intensity will be non-zero for all air channels if N+ 1 is a prime number.
From the above analysis, we derive that acoustic supermodes are actually the eigen-modes of the waveguide
complex.

In this paper, the studied waveguide complex comprises five air channels segregated by four gratings (N=5),
as illustrated in Fig. 1(a,b). In our design, the channels and gratings are fabricated with Aluminum alloy that is
treated as rigid to air. Propagating inside the waveguide complex, acoustic waves in one channel will be allowed
to tunnel into the neighboring ones through periodic gratings. Based on the effective medium approach, acoustic
gratings can be equivalent to metafluid layers with non-dispersive bulk modulus and density tensor in the long
wave condition!®!!. In respect that there are no local resonances as well as weak damping in air channels and
metafluid layers, the wave propagation in this coupled waveguide array is featured with low energy loss in broad-
band. For the structural parameters, the thickness, slit width, and slit period of gratings are t=1.4cm, s=0.5cm,
and p =2 cm, respectively. The width of air channels w=2.6 cm. According to Eq. (4), we can predict that there
are five supermodes supported by the waveguide array since N =5, and analytically obtain the weight factors of
all air channels for each supermode by ignoring dx.

Next, we simulate the sound propagation in an array of five coupled waveguides in Fig. 2(a-f), where the
thermo-viscous damping effect is taken into consideration (see the Method section). In the numerical simulation,
the total waveguide length is 90 cm. There are 35 slits connecting two adjacent channels. For convenience, we
number the channels as 1, 2, 3, 4, 5 from below. Figure 2(a—e) show the normalized pressure field distributions for
five different supermodes at m =1, 2, 3, 4, 5, where the operation frequency f=4kHz and the excitation condition
is determined by Eq. (4). The results clearly present the stable propagation of acoustic supermodes, where the field
pattern is periodically repeated along z axis. We find out that the supermodes can be classified into symmetric and
anti-symmetric ones for odd and even orders, respectively. To be specific, in Fig. 2(a,b), the supermode at m=1
takes the form of A! = (1/2, 372, 1, 372, 1/2), while the one at m=2is A = (1, 1, 0, —1, —1). From the
field maps, we note that the waveguides at (m, [, N) = (2, 3, 5), (3, 2, 5), (3,4, 5), and (4, 3, 5) are nearly “dark” due
to destructive interferences, in well agreement with the aforementioned criterion that ml/(N + 1) should be an
integer for A" = 0. It should be pointed out that the acoustic supermode can be easily excited in experiments,
since there are only two types of coupling between adjacent air channels, viz., in-phase and out-of-phase cou-
plings. Hence, we only need a simple voltage inverter circuit with tunable current amplitude and 0(or 7)-phase to
drive a set of emitters. By contrast, an arbitrarily chosen input (1, 0, 0, 0, 1) is sent into the coupled waveguide
array. As shown in Fig. 2(f), after propagating through a certain distance, acoustic waves are clearly spreading to
all channels via the coupling-induced diffraction, with pressure field pattern considerably modified at the output.
In this case, the information carried by acoustic waves at the input can hardly be extracted at the output.

For characterizing wave propagations in the coupled waveguide array in details, we extract the waveforms of
channels 1, 2, and 3 from the data in Fig. 2(a-f), as plotted by the curves in Fig. 3(a—f). Figure 3(a—e) show the
waveforms of different supermodes from z=30cm to z=60cm at m=1, 2, 3, 4, 5, respectively. For all the super-
modes, sound in each air channel bears a stable propagation with the amplitude unchanged. As an example, for
the supermode at m =1 in Fig. 3(a), we clearly see the perfect sinusoidal waveforms in channels 1 (blue dot dash
line), 2 (red dashed line), and 3 (black solid line), with the amplitude ratio being1/2: A[3/2: 1and phase locked.
In the aforementioned theoretical part, we have shown that the supermode in a coupled waveguide array takes a
modulated plane wave form of p = YN | A Ape ~1%_Therefore, it is predicted that the modal field will revive at
intervals of L, =27/[3,, viz., supermode wavelength. From Eq. (4), 3,, becomes smaller as m increases. We will
obtain that the higher-ordered supermode has a longer wavelength. In Figure 3(a—e), the supermode wavelengths
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Figure 3. Numerical simulation and experimental measurement. (a—f) Simulated and measured pressure
field distributions along the central line of channels 1, 2, and 3 from z= 30 cm to z= 60 cm, corresponding

to the cases of Fig. 2(a-f), respectively. The blue dot dash line, red dashed line, and black solid line are the
simulation data of channels 1, 2, and 3, while the blue squares, red circles, and black triangles are the measured
data of channels 1, 2, and 3 in experiments. In (a-e), the wavelengths of five supermodes at m=1, 2, 3, 4, 5, are
marked by L,, L, L3, L, and Ls, respectively.

are numerically calculated to be L, ~8.10cm, L,~8.36 cm, L;~8.78 cm, L,~9.54 cm, and L;~ 10.33 cm, which
agrees well with the theoretical prediction. It should also be mentioned that we can further derive the coupling
coefficient between nearest neighbor waveguides C and the self-coupling coefficient x;, from the calculated super-
mode wavelengths L,,. In our case, we have C~7.67 x 10~2.cm~2and k¢ + x, ~ 0.513cm™ 2. Figure 3(f) displays
the waveform of a normal propagation mode in the coupled channels, featured with constantly changing wave
amplitude and phase differences between two arbitrary channels.

To demonstrate the existence of acoustic supermodes experimentally, we have fabricated the sample of wave-
guide complex with five coupled air channels, and measured the pressure field through perforated holes, as shown
in Fig. 1(b). For each air channel, there are 40 holes equally spaced by 2 cm. The details of experimental measure-
ments are presented in the Method section. The measured results are shown by the dots in Fig. 3(a-f), where the
blue squares, red circles, and black triangles are the measured data of channels 1, 2, and 3 after normalization. We
clearly see that the experimental results are in very good agreement with numerical simulations.

We would also like to point out that the formation of acoustic supermode has nothing to do with frequency, as
theoretically unveiled by Eq. (4). To verify this, we simulate the propagation of the 1st-ordered supermodes at two
different frequencies of 4.5 kHz and 5kHz, respectively, as shown in Fig. 4(a,b). The maps of pressure field distri-
bution display the stable propagation of supermodes, in respect that the output signal is almost the same as the
input. From the simulation, we can obtain the supermode wavelengths of the 1st-ordered supermodes at 4.5kHz
and 5kHz, viz., L', ~ 7.15cm and L”; ~ 6.38 cm, which shows that the supermode wavelength becomes longer
at lower frequencies. In Figure 4(c,d), the experimental results agree with the simulation quite well, with both
indicating that the designed waveguide complex can effectively support the acoustic supermode propagation in
broadband.

At last, we show that our technique can be applied in the ultrasound regime, which might be useful in
high-fidelity broadband underwater communication. In the proof-of-concept simulation, we employ Steel
(mass density p=7.80 x 10°>Kg/m?; velocity of longitudinal waves ¢;= 6100 m/s; velocity of transverse waves
¢,=3300m/s) instead of Aluminum alloy to reduce solid-liquid coupling. The operation frequency is chosen
to be 1.02 MHz. For the structural parameters scaled by approximately 0.022, the thickness, slit width, and

SCIENTIFIC REPORTS | 7:45603 | DOI: 10.1038/srep45603 4



www.nature.com/scientificreports/

(a)
Imm L 1|
L 1|
1 |
Imm mm
Inm m
0 15 75 90 0 45 920
Propagation Distance (cm) Propagatmn Dlstance {cm)
© . . — : d .
~ Lo} ~ L0}
E g
S 05 S 0.5}
f ) 2
g 0.0} 2 00
v o
£-05) £-0.5}
1.0k 5 1.0 -
30 35 40 45 50 55 60 30 35 40 45 50 55 60

Propagation Distance (cm) Propagation Distance (cm)

Figure 4. Robustness of acoustic supermodes at different frequencies. (a,b) Normalized pressure field
distributions of the 1st-ordered supermodes at 4.5 kHz and 5kHz, respectlvely As predicted by Eq. (4), both
supermodes take the same form of A' = (1/2, /372, 1, +/3/2, 1/2). (c,d) Simulated and measured pressure
field distributions along the central line of channels 1, 2, and 3 from z= 30 cm to z= 60 cm, corresponding to
the cases of (a) and (b), respectively. The blue dot dash line, red dashed line, and black solid line are the
simulation data of channels 1, 2, and 3, while the blue squares, red circles, and black triangles are the measured
data of channels 1, 2, and 3 in experiments.
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Figure 5. Pressure fields of different propagating modes in the ultrasound regime. (a—e) Normalized
pressure field distributions of five different supermodes at m=1, 2, 3, 4, 5, respectively. The weight factors of all
water channels for each supermode are appended on top of the corresponding panels. (f) Normalized pressure
field distribution when the input does not form a supermode. The operation frequency f=1.02 MHz.

slit period of gratings are t=0.308 mm, s =0.11 mm, and p = 0.44 mm, respectively. The width of air channels
w=0.572mm. We simulate the ultrasound propagation in the coupled waveguide complex in Fig. 5(a-f), where
the thermo-viscous damping effect and solid-liquid coupling are taken into consideration. Even though there
exist some field disturbances due to solid-liquid interaction, our results still reflect the characteristic propagation
of acoustic supermodes, where the field pattern is periodically repeated along z axis.

Discussions

In summary, we have investigated the supermode propagation in coupled acoustic waveguides analytically,
numerically, and experimentally. The experimental results agree well with the theoretical prediction and numer-
ical simulation. The proposed device bears the advantages of easy fabrication, small fingerprint, low-loss and
broadband performance, as well as the potential to further extend into higher dimensions and the ultrasound
regime, which is very promising in various practical applications, such as underwater acoustic communication,
ultrasound imaging, and sensing, etc. Our study may pave the way to explore other types of anomalous wave
manipulation in integrated acoustic networks.
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Methods

Numerical simulation. Throughout this paper, we consider the thermo-viscous damping in all numerical
simulations by employing thermo-acoustics module of COMSOL Multiphysics™ 5.2. A perfectly matched layer
is added at the right side to prevent reflections. In the ultrasound simulation, the solid-fluid interaction is also
take into consideration.

Experimental measurement. In the experiment, we employ a multi-function waveform generator
(RIGOL DG1032Z) and a stable power amplifier (AOSIBAO A8 HIFI) to output multiple locked sinusoidal elec-
trical signals, and then use a connected full-range driver (HiVi B1S) to convert the electrical signals into sound.
The pressure field is measured by a 1/8-inch diameter Briiel&Kjaer Type-LAN-XI-3160 condenser microphone.
All data are recorded and processed with Briiel&Kjaer PULSE 3160-A-042 4-channel analyser. During the field
measurement, other unmeasured holes are plugged with screws to prevent sound leakage.
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