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The geometric phase of Zn- and 
T-symmetric nanomagnets as a 
classification toolkit
M. Prada

We derive the general form of the non-trivial geometric phase resulting from the unique combination of 
point group and time reversal symmetries. This phase arises e.g. when a magnetic adatom is adsorbed 
on a non-magnetic Cn crystal surface, where n denotes the fold of the principal axis. The energetic 
ordering and the relevant quantum numbers of the eigenstates are entirely determined by this quantity. 
Moreover, this phase allows to conveniently predict the protection mechanism of any prepared state, 
shedding light onto a large number of experiments and allowing a classification scheme. Owing to its 
robustness this geometric phase also has great relevance for a large number of applications in quantum 
computing, where topologically protected states bearing long relaxation times are highly desired.

In the early 80’s, Berry discovered an intriguing, non-integrable phase depending only on the geometry of the 
parametric space1. This phase, which had been overlooked for decades, provided a deep insight on the geomet-
ric structure of quantum mechanics, resulting in various observable effects. The concept of the Berry phase is a 
central unifying concept in quantum mechanics, shedding light onto a broad range of phenomena such as the 
Aharonov-Bohm effect, the quantum and the anomalous Hall effect, etc. Moreover, geometric or Berry phases 
nowadays represent the most robust resource for storing and processing quantum information2.

In this work, we focus on the fundamental aspects of the geometric phase arising from the combination of 
n-fold (Zn) point group and time reversal (TR) symmetries. This concept appears in a clean and illustrative form 
in spin adsorbates (SA) on non-magnetic Cn symmetric crystal structures3–22. Owing to the spin orbit coupling, 
these systems possess n-fold spin rotations while being time-reversal symmetric. The SA’s large magnetic moment 
adapts to the anisotropic crystal field, resulting in non-trivial spin dynamics and bearing enhanced lifetimes of 
the two degenerate ground states in the SA23–26. However, a general classification scheme of this novel symmetry 
combination has not been so far reported, nor a comprehensive study of the mechanisms responsible for this spin 
protection from a general perspective.

Here we derive an exotic geometric phase that captures all the possible symmetry combinations of a n-fold 
rotational magnet. With only this quantity, a general classification scheme based purely on symmetry arguments 
follows. In addition, we obtain two quantum numbers resulting from the intriguing combination of the symme-
tries. Finally, we are able to predict the allowed transitions induced by a general exchange interaction, finding 
topologically protected states for some particular combinations of spin and n. This phase permits thus to deal 
with two related problems at once, both relevant to the use single quantized spins to store classical information: 
whether or not the ground state is doubly degenerate, and whether or not direct exchange-mediated spin transi-
tions may occur between the two ground states. Hence, this phase may suggest novel designs of fault-tolerant, SA 
based quantum logic gates.

Methods
A free SA is characterized by a set of (2J +​ 1) fully degenerate eigenstates, {|J, M〉​}, where J denotes the ‘spin’, e.g. 
the effective spin S for transition metal ions, or the total angular momentum L +​ S for rare earth ions, and M 
denotes its z-component. The symmetry is lowered when the SA is placed on an axially symmetric site, and it may 
be described by a generic axial term =ˆ ˆH DJzu

2
, resulting in a set of J (J +​ 1/2) pairs of states for J integer 

(half-integer). For transition metal ions, Ĥu represents the axial zero field splitting term of an effective spin 
Hamiltonian, whereas for rare earths, Ĥu is a physical crystal field Hamiltonian27–29. For rhombic symmetry sites, 
a generic rhombic term Ĥn must be added, which mixes the magnetic quantum numbers and hence M ceases to 
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be a good quantum number. Ĥn is a combination of n-powers of the ladder operators26,30, = ±
±ˆ ˆ ˆJ J iJx y. To low-

est order, the generic Hamiltonian for the SA reads:

= + = + ++ −
αˆ ˆ ˆ ˆ ˆ ˆ ˆH H H D J E J J J( ) {[( ) ( ) ], }, (1)n z z n

n n
zu

2

with {, } denoting anticommutator. α​ =​ 0 (1) for even (odd) n to ensure TR invariance of H31. The generic 
Hamiltonian in Eq. (1) can equivalently be expressed in terms of extended Stevens operators32 ˆ ˆO X( )k

q
, with 

=ˆ ˆ ˆX J S( ) in crystal field (zero-field splitting) Hamiltonian33, where the meaning of ‘spin’ should not be 
confused27,34,35.

Owing to the discrete rotational and time-reversal symmetries associated with the point group of the crystal 
Cn and the absence of an external magnetic field, respectively, we obtain:

=π
ˆ ˆH R[ , ] 0, (2)n

z
2 /

 =ˆ ˆH[ , ] 0, (3)

where we have defined the rotations of the Cn point group πR̂ n
z
2 / , and the TR operator ̂ . The irreducible rep-

resentation of the n-dimensional Cn group is given by … ππ −e e{1, , }i n i n n2 / 2 ( 1)/ , whereas the irreducible rep-
resentation generated by TR has two elements, {1, −​1}. Hence, it appears natural to label the eigenstates according 
to the phase acquired under a symmetry spin rotation, 2π​m/n and the one related to the time-reversal operator, ς​
(m, n). We are thus introducing two new quantum numbers: m, arising from the discrete rotations of the Cn 
group, and ς​(m, n), describing the TR transformations. Considering first the rotations, we have

ψ = ψ .π
ς π ςR̂ e (4)n m

i m n
m2 /

2 /

On what follows we choose m, an arbitrary representative of the rotational subgroup, to be the element with 
largest absolute value of z-component of the spin. We note that this rotationally invariant representation would 
correspond to the coloring code of the states commonly being used26,36–38, and we want to point out its relation to 
the discrete 2π​/n-rotations. This connection does not appear clear in the present literature. Finally, ψς

m  is a linear 
combination of |J, M〉​ states30,

∑ψ = ± − .±
ς

− ≤
c J m nk, ( )

(5)
m

k m nk J
k
n

:

ck
m are some coefficients to be determined by the environmental field34, and the sum is evaluated over a set of k 

integer with the condition |m −​ nk| ≤​ J. We can immediately see that ψ±
ς

m  satisfies (4),

∑

∑

ψ = ± −

= ± −

= ψ .

π ±
ς
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π

− ≤

− π

π ς

ˆ ˆR c R J m nk

c e J m nk

e
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n
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n i m nk n
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2 /
:

2 /

:

( )2 /

2 /

For the ck
m coefficients, we may expect the largest contribution to the ground state to be given by k =​ 0 at m =​ ±​J, 

in the typical case where 
D Ez n  and Dz <​ 0. ς​ labels the TR phase that connects two states in the 

time-reversed pair.
We now focus on the action of ̂  in (5). Following the procedure carried out in ref. 26 (supplemental mate-

rial), we obtain:

∑ψ = − − .ς π

− ≤

− πˆ ⁎e c e J m nk( ) , ( )
(6)

m
i m

k m nk J
k
m i nk

:


Applying the operator twice, ̂
2
, we obtain the usual eigenvalues ±​1 (positive for integer m and negative, for 

m half-integer. However, noting the axial nature of spin, we have that  =π − π
ˆ ˆ ˆ ˆR Rn

z
n

z
2 / 2 / , which involves that ̂  

and  ≡
−

− π − π
ˆ ˆ ˆ ˆR Rn

z
n

z
2 / 2 /  are two alternative ‘paths’ of the time reversal operator (see Fig. 1). Likewise, we may 

define its counterpart:  ≡
+

π π
ˆ ˆ ˆ ˆR Rn

z
n

z
2 / 2 / , involving anti-clockwise rotations. Hence, the action of TR and this 

new ‘rotated time reversal’ (RTR) operators should yield the same state up to a global phase. We may thus define 
this phase as our quantum number ς​(m) related to the RTR symmetry, in analogy with the TR operation:

ψ = ψ ψ = ψ = ψ .
− ς ς

−
ς − − ς − ς

−
ς − − ς −ς − ςˆ ˆ ˆe e e; ( ) (7)m

m i m
m

m
m

i m
m

m i m m
m

m( ) ( ) ( ) 2 ( ) ( ) [ ( ) ( ) ] ( )  

An important point to note is that the two quantum numbers related to the symmetries arising as a conse-
quence of (2) and (3), are mutually dependent in the conventional representation, where the action of spin rota-
tions is given by (4). This action depends on the representative m and the fold of the axis n, which implies that the 
action of the TR depends as well on both parameters, m and n. That is, once n is fixed, ς​ is a function of m. Without 
loosing generality, we may choose ς​(m) =​ −​ς(−​m), bearing:
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 ψ = ψ .
− ς − ς ςˆ e( ) (8)m

i m
m

m2 2 ( ) ( )

Bearing in mind the anti-unitarity of 
−ˆ  and using (4) and (6), we encounter:

  

 
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Comparing (9) with the definition in (8), we obtain the global phase ς​:

ς = π


 +



.m n m

n
( , ) 1 4

(10)

We note that a similar result can be obtained by the action of an ‘anti-clockwise’ rotation, ≡
+

π π
ˆ ˆ ˆ ˆR Rn

z
n

z
2 / 2 /  . 

It is straight forward to perform a similar derivation as in (7–9), resulting in an alternative definition of the global 
phase,

ψ = ψ

= ψ

= ψ

ς′ = π

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which would result in a similar classification scheme. In general, we may write:

ψ = ψ = ψ .
+ ς π −

−
ς − ς

−
ς −ˆ e e (12)m

m i m n
m

m i m
m

m( ) (1 4/ ) ( ) ( ) ( )

In this sense, we may describe a RTR operation by either expression of ς​ given in (10) or by that of (11), since 
for each positive representative m, its counterpart −​m can be chosen as representative. Without loosing general-
ity, we have chosen the latter in this work. Note that in the last step of (11) we have used = ∀π − πe e mi m i m2 2 . With 
this choice, the action of subsequent 

−ˆ( ) and 
+ˆ( ) yields the usual Wigner’s phase, 2iπ ​m : 

Figure 1.  Cartoon illustrating the two paths that connect time-reversed pairs for different Jz states for 
n = 3: Direct time-reversal (black broken arrow) and rotated time reversal 

+
T̂  and 

−
T̂  (red and blue arrows, 

respectively). Note that Jz is not a good quantum number, i.e., the symbols do not represent eigenstates, 
although the colors label the rotational class and hence can be connected by symmetry rotations. The vertical 
axis correspond to the mean value of the energy (not to scale).
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ψ = ψ = ψ
+ − ς

π − π
ς π ςˆ ˆ ˆ ˆ ˆR R e( )( ) ( )m n

z
n

z
m

i m
m2 /

2
2 /

2   , as required. As we will see next, this corresponds to per-
forming a RTR operation and its inverse.

The action of 
+
̂  and 

−
̂  can be represented by a cyclic group of dimension d =​ 2|1 −​ 4/n|−1 (d =​ 1, for n =​ 4) 

(see Table 1), and elements {ei2πi/d}, = … −i d0, 1, 1. This implies that if d >​ n, the subspace spanned by the 
representatives m (of dimension n) has to be enlarged to represent each of the d elements of the subspace gener-
ated by the RTR operation.

Results and Discussion
Eq. (10) is the central result of this work, and can be identified with a geometric phase that arises due to the 
non-trivial TR and rotational symmetry combination. A graphical interpretation is given in Fig. 1, where the 
expectation value of the energy is plotted as a function of Jz. Note that Jz is not a good quantum number, as the 
Hamilonian (1) mixes the different Jz. ς​(m) is the phase acquired under a RTR operation for the states at the bot-
tom of the zone (n =​ 3, in this example). The red (blue) path is related to 

+ˆ  (
−
̂ ), and yields a global phase of  

π​m(1 +​ 4/n) (π​m(1 −​ 4/n)). This phase is topological in the sense that it can only be defined within the cyclic 
group Cn and the related closed paths in the Bloch sphere39–41.

To illustrate this theory with an example, we consider the case studied by Miyamachi et al.26, where they con-
sider Ho impurities (J =​ 8) on a 3-fold crystal (n =​ 3). Three rotationally invariant subgroups arise, one mixing 
M =​ −​8, −​5, −​2, 1, 4, and 7, (we may choose as our representative m =​ −​8, usually marked ‘blue’ in literature), 
with rotational phase −​8iπ​/3 ≡ iπ​/3, another mixing M =​ −​7, −​4, −​1, 2, 5, 8 (m =​ 8, red), with rotational phase 
2iπ​/3, and the last one with M =​ −​6, −​3, 0, 3, 6 (m =​ 6, green), with rotational phase 0. These corresponds to the 
irreducible representation {ei4π/3, ei2π/3, 1}, respectively, in terms of the phase each member of the subgroup 
acquires under the discrete rotations. An equivalent representation, using the representatives m, would be {−​8, 8, 
6}. Interestingly, whereas the TR eigenvalue of the isolated adatom is real (recall that J is integer in this specific 
example), the TRT eigenvalue result complex, with dimension d =​ 2|1 −​ 4/n|−1 =​ 6. We then must take d =​ 2n 
representatives to span the whole subgroups generated by RTR. It may be seen by inspection, that the RTR can be 
generated now by the 6 representatives {−​8, 8, −​7, 7, 6, 3}, or equivalently, {0, 1, −​1, 2, −​2, 3}. These span the 
discrete phases − π π − π π πe e e e e e{ , , , , , }

i i i i i0 /3 /3 2 /3 2 /3 . An immediate consequence is that the 3-dimensional rota-
tional group can not represent the 6-dimensional RTR group. This implies that the usual convention in literature 
(three color scheme as in Fig. 1b of ref. 26) does not represent faithfully the combination of symmetries given by 
both (2) and (3). Figure 2d shows a complete classification scheme for integer J and n =​ 3 with the 6 relevant 
elements.

Table 1 lists all the possible eigenvalues of the time-reversed pair of R̂ and related TR phases, for any combina-
tion of m and n.

For completeness, we evaluate next the possible protection mechanisms to first order based on the values of 
Table 1, allowing us to obtaining a general classification scheme. In general, the experimental setups designed for 
memory storage aim for a magnetic ground state as robust (or long lived) as possible. Hence, it appears relevant 
to study the protection to zero-th order12,42, by examining ψ ψς

−
ς −

m
m

m
m( ) ( ) . We emphasize that the phases given by 

ς​(m) and ς​(−​m) are in general different. It is immediate to see that the pair is actually the same state (i.e., given by 
the same representative) when both m and 2m/n are integers. The latter condition indicate that they are the same 
rotational class, whereas the former leads to a real representation of the time-reversal group (iς​(m) is then an 
integer multiple of iπ​). In addition, a coefficient relation may easily be obtained, using (6) in (5):

= .π − ⁎c ce ( ) (13)k
m i nk

k
m

In terms of the original components, the crystal Hamiltonian Hn mixes |J, ±​M〉​ and |J, ±​(M −​ nk)〉​. Together 
with (13), and choosing the coefficients ck

m to be real, this implies non-magnetic =Ĵ( 0)z  bonding and 
anti-bonding mixtures, commonly termed as quantum spin tunneling splitting30. This brings two consequences: 
(i) if m =​ ±​J, then preparation of a magnetic ground state would result into short relaxation times26 and quantum 
spin tunneling20 (ii) if ≠m J, this results in the appearance of a shortcut tunneling26,36.

In typical samples, the main mechanism for magnetization reversal are spin-flip events mediated by exchange 
interaction with substrate or tunneling electrons36,43–47, which can be described in its most general form, as

α σ=
→

⋅ →ˆ ˆ ˆH J , (14)e

Symmetry, m n = 2 (d = 2) n = 3 (d = 6) n = 4 (d = 1) n = 6 (d = 6)

±
̂

I ±​1 ±​1, e±iπ/3, e±2iπ/3 +​1 ±​1, e±iπ/3, e±2iπ/3

HI e±iπ/2 e±iπ/6, e±iπ/2, e±5iπ/6 −​1 e±iπ/6, e±iπ/2, e±5iπ/6

R̂
I ±​1 1, e±i2π/3 ±​1, e±iπ/2 ±​1, e±iπ/3, e±i2π/3

HI e±iπ/2 −​1, e±iπ/3 e±iπ/4, e±i3π/4 e±iπ/6, e±iπ/2, e±i5π/2

Table 1.   List of all possible ˆ ˆ ˆRTR-related phases, eiς (upper rows) and R̂ eigenvalues, ei2π/n (lower rows), for 
any n and m combination. I = integer m, HI = half-integer m.
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Figure 2.  Schematic representation of the lowest energy levels (not to scale) as a function of ς(m, n) 
(10), for all possible m, n combinations. The different cases are labeled in terms of the possible scenarios: 
T =​ tunneling, K =​ Kondo, PP =​ Protected by point-group, PT =​ Protected by time reversal. Inset: colors are 
related to the rotational classes.
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where σi are the usual Pauli matrices denoting the electronic spin and α​ is an arbitrary constant. In the weak 
coupling limit, the degrees of freedom of the electrons and the adatom factorize. Using the anti-unitarity of the 
TR operator and Eqs (11) and (12), we have

   

 

〈ψ | |ψ 〉 = 〈 ψ | | ψ 〉

= − 〈 ψ | | ψ 〉

= − 〈ψ | |ψ 〉

ς
−
ς − + ς + + − +

−
ς −

+ ς +
−
ς −

− ς ς
−
ς −

 





ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

⁎

⁎

J J

J

J

( )

e , (15)

m
m

m
m

m
m

m
m

m
m

m
m

i m
m

m
m

m

( ) ( ) ( ) 1 ( )

( ) ( )

2 ( ) ( ) ( )

where we have used 〈 ψ | = 〈ψ |
+ ς − ς

−
ς −ˆ em

m i m
m

m( ) ( ) ( )  and | ψ 〉 = |ψ 〉 = |ψ 〉
+

−
ς − ς − ς − ς ςˆ e em

m i m
m

m i m
m

m( ) ( ) ( ) ( ) ( ) . We stress 
the importance of the phase ς​(m), since the matrix element may exist only when (i) ς = π +i m i l2 ( ) (2 1), ∈l , 
and (ii) −​m +​ 1 and m (or −​m −​ 1 and −​m) belong to the same class, or equivalently, when (i) 2m(1 +​ 4/n) is an 
odd integer and (ii) (2m −​ 1)/n [or (2m +​ 1)/n] is an integer.

For the former, (i), we would like to stress that a complex phase different to 2iς​(m) =​ iπ​ forces the matrix 
element in Eq. (10) to be 0, which we will term as time-reversal protection. A geometrical interpretation of this 
cancellation was already noted by von Delft et al.41, where the topological phase leads to destructive interference 
between the symmetry-related tunneling paths. Although not affecting the overall results in the particular case 
studied by refs 26,38, we want to note that this phase was not taken into account by Miyamachi et al. nor by 
Karlewski et al. yielding a difference between our Eqs (4) and (15) in ref. 26 or Eq. (6) in ref. 38. Clearly, condition 
(i) is never satisfied for their particular m integer case, however, their approach would fail e.g. in the simple case 
with n =​ 2, and half integer J.

The geometric interpretation of this phase can be given in terms of the Euclidean action. The general SA 
Hamiltonian given by = +ˆ ˆ ˆH H Hs e (1, 14) has an easy axis (say the z axis, θ​ =​ 0), around which it has n-fold 
symmetry, θ φ = θ φ + π ∀ φˆ ˆH H n( , ) ( , 2 / )s s . Now we consider an initial and final state corresponding to the two 
degenerate classical ground states, |θ​ =​ 0〉​ and |θ​ =​ π​〉​. The tunneling amplitude is then given by 
〈θ = | |θ = π〉

ˆ
e0 iH t/s  . If T(φ​ =​ 0) is a tunneling path from |θ​ =​ 0〉​ to |θ​ =​ π​〉​ (broken black arrow of 1), then 

T(φ​ =​ −​2π​/n) defined by −φ −φ
ˆ ˆ ˆR TR  (blue arrows of 1) is also a tunneling path, related by symmetry to T(φ​ =​ 0). 

The corresponding tunneling amplitudes differ at most by a topological phase, given by the Euclidean action S(T) 
over the symmetry related paths41 and often refer to as a Berry phase48, which reduces to, for our SA:

φ = − φ = π = πS T S T n i m
n

[ ( 0)] [ ( 2 / )] 4

The total amplitude acquires then a phase given by the sum over all paths. Since the number of paths is given 
by the dimension d of the TRT, we may write ϕ∆ = ∑ =

− πek
d i mk d

0
1 4 / , which is clearly 0 unless 2m is an integer mul-

tiple of d. In this sense, ς​ can be identified with the discretized Euclidean action, φς = = πi m n S T n( , ) [ ( 2 / )], 
corresponding to the topological term of the Lagrangian.

Based on the above, we may draw a few conclusions: (i) when both m and 2m/n are integers, we expect 
non-magnetic energy split states. Otherwise, the pair of states remain degenerate. (ii) The ground states are pro-
tected by both, TR and rotational symmetry for integer J and fractional 2J/n: the latter implies that they belong to 
different rotational classes. One may expect a more robust protection if (2J −​ 1)/n is also fractional by employing 
a similar argument. (iii) The ground states are protected by TR for a fractional J to zero order, even if 2J/n is inte-
ger, and further, if (2J −​ 1)/n is fractional, then symmetry protection appears to first order. Finally, (iv) the ground 
states are protected by TR symmetry for fractional J and fractional 2J/n. In this last case, if (2J −​ 1)/n is 0 or inte-
ger, then the protection is exclusively by TR, and we may say the states are topologically protected. This topologi-
cally protected states may occur for m half integer and (a) n =​ 3, 6 and m =​ (1 +​ 6k)/2, (b) n =​ 4 and 

≠ … +m k5/2, 11/2, (1 4 )/2, (c) n =​ 3 and integer m =​ 1 +​ 3k with k integer or 0 (see boxed ‘PT’ on the right side 
of Fig. 2c,d,h).

We proceed now to evaluate all the possible symmetry combinations. The ordering of the lowest n pairs (2n 
pairs, for n =​ 3) is depicted in Fig. 2, as a function of the phase ς​(m) defined in (10), assuming |Dz| >​ En, Dz <​ 0 
and J >​ n. The left panels (a,c,e,g) correspond to integer J, whereas the right ones (b,d,f,h) belong to half-integer 
J. For each case we consider only the first l =​ max{d, n} pairs of states, hence from m =​ ±​J to m =​ ±​(J −​ l). These 
describe the first fold, pretty much like the k- states in a Brillouin zone. In fact, higher energy states will then 
acquire similar discrete phases. Note that the ordering of the states could be altered when considering higher 
order terms, whereas truncation of the fourth-rank (k =​ 0) terms may introduce errors49–51. However, for the sake 
of simplicity, we restrict our discussion to the Hamiltonian defined in (1). The labels (PT, PP, K, T) describe the 
protection of each pair, assuming the pair is at the ground state, with T =​ tunneling, K =​ Kondo, PP =​ Protected 
by point-group, PT =​ Protected by time reversal (see below). The colors indicate the rotational phase, e.g., for 
n =​ 2, if spin is half-integer, the rotational phase can only take π​/2 or −​π​/2, which we label with dark and light 
green, respectively, whereas it take π​ or 2π​ in the spin integer case, labeled black or yellow.

For n =​ 2 (panels a,b of Fig. 2), noting that 2m/n =​ m is integer (fractional) whenever m is (semi-)integer, we 
conclude that the two states always belong to the same (different) rotational class. For integer m, there is only one 
possibility, which is the non-magnetic combinations of states, commonly termed as the tunneling case (T)20. For 
half-integer m, the exchange mixing is always allowed, since ς = π +i m i l2 ( ) (2 1), and (2m ±​ 1)/n =​ l, ∈l . This 
is the so-called Kondo (K) case, where scattering with a single electron leads to transitions between the two 
ground states, as was studied by Ternes et al.15.

For n =​ 3 (panels c,d of Fig. 2) and m integer, 2m/n is integer for m multiple of 3 bearing the split states (black, 
rotation eigenvalue =​ 1) already noted in the panel above (T). When 2m/3 is fractional, the RTR eigenvalues are 
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±​π​/3 or ±​2π​/3, which can have a rotational phase of ±​2π​/3 (brown and red, respectively). If the next level is 
the split pair, then the pair is protected by both point group and TR symmetry (PP,PT). However, if the next pair 
contains the same rotational classes, then the single electron scattering mechanism is still unavailable, since 2ς​
(m, n =​ 3) is fractional (see Eq. (15)), bearing a cancellation by topologically protected states (labeled PT). This 
is consistent with the protection observed by Miyamachi et al.26. For half-integer m, eiς(m,n=3) is always complex, 
implying that Kramers theorem applies for all states51. Even if the pair belongs to the same rotational class, nei-
ther direct mixing nor exchange mixing may occur (yellow pair of Fig. 2d). Finally, we find a set of topologically 
protected states as in the integer case.

For n =​ 4, iς​(m) =​ 2iπ​m. With the restriction −​π​ <​ ς​(m) ≤​ π​, all states fall in phase zero (π​) for integer m 
(half-integer m). It is easy to see that if m is an even integer, then the pair is in the same rotational class, resulting 
in the splitting (T), whereas an odd integer m results in protected states also under exchange with electrons: the 
rotational phases of the pair are ±​π​/2. This results in the alternating pattern of Fig. 2e, consistent with the protec-
tion observed by Donati et al.13,14. In the half-integer case, none of the conditions for exchange with electrons 2iς​
(m) =​ iπ​(2l +​ 1), ∈l  or (2m −​ 1)/n integer are satisfied, bearing both PT and PP for all levels.

Finally, for n =​ 6 (panels g,h of Fig. 2), six different rotational classes appear, resulting in enhancement of the 
protection of the states. First order exchange with electrons is always forbidden. For half-integer J, the protection 
is to highest order of all the possible cases.

Note that the theory presented here applies as well for J ≤​ n, only that in this case not all the states of Fig. 2 
would enter the diagram. For instance, if we consider J =​ 3/2 and n =​ 6, only the four topmost states depicted in 
Fig. 2h would appear. A generalization to the case where the GS is not dominated by M =​ ±​J is possible with some 
modifications. Although the same phase spectrum ς​(m) would be observed, the energetic ordering would change 
and also the evaluation of the matrix elements in (15) would need to be re-adapted.

Conclusions
In conclusion, we have derived the quantum numbers that describe the discrete rotations of a nanomagnetwith 
discrete rotational symmetry. In combination with time reversal symmetry, a non-trivial topological phase is 
derived, revealing the intriguing protection mechanisms of the resulting ground states, associated to a rotated 
time reversal operator. We have developed a comprehensive classification scheme based solely on symmetry argu-
ments, which reveals a particular folding of states. Our results are relevant for the proposal of SA-based memory 
storage devices, as well as for the recent studies revealing Kondo effect in SA. Moreover, our findings should 
stimulate experimental groups to find interferometry experiments that allow to unveil this geometric phase2,52.
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