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Emergent biomarker derived from next-generation
sequencing to identify pain patients requiring uncommonly
high opioid doses
D Kringel1, A Ultsch2, M Zimmermann3, J-P Jansen4, W Ilias5, R Freynhagen6,7, N Griessinger8, A Kopf9, C Stein9, A Doehring1,
E Resch10 and J Lötsch1,10

Next-generation sequencing (NGS) provides unrestricted access to the genome, but it produces ‘big data’ exceeding in amount and
complexity the classical analytical approaches. We introduce a bioinformatics-based classifying biomarker that uses emergent
properties in genetics to separate pain patients requiring extremely high opioid doses from controls. Following precisely calculated
selection of the 34 most informative markers in the OPRM1, OPRK1, OPRD1 and SIGMAR1 genes, pattern of genotypes belonging to
either patient group could be derived using a k-nearest neighbor (kNN) classifier that provided a diagnostic accuracy of 80.6 ± 4%.
This outperformed alternative classifiers such as reportedly functional opioid receptor gene variants or complex biomarkers
obtained via multiple regression or decision tree analysis. The accumulation of several genetic variants with only minor functional
influences may result in a qualitative consequence affecting complex phenotypes, pointing at emergent properties in genetics.
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INTRODUCTION
Genotyping-based drug therapy decisions are increasingly desired
in clinical practice; however, their introduction is still limited. The
so far published single functional genetic variants are increasingly
perceived as insufficient in providing a genetic diagnosis of
clinical phenotypes.1 However, exploitation of the whole genetic
information becomes possible overcoming the restricted selection
of known variants. Next-generation sequencing (NGS)2 provides
unrestricted access to the subjects’ genome.
As the resulting ‘big data’ exceeds in its amount and complexity

the classical approaches, the analysis of NGS derived data is an
active research topic. It has already led to working solutions (for
review, see Nielsen et al.3 and Pabinger et al.4) and new statistical
methods for analyzing NGS data are continuously emerging.5–9

However, methods to convert NGS-derived big data into biomar-
kers are still sparse and solutions exploiting the whole genomic
information content for patient classification are still needed. Novel
types of classifying biomarkers derived from NGS information are
needed, and we report a subsymbolic classifier that uses emergent
properties in genetics10 with the potential of self-learned improve-
ment from successively addable genetic and clinical information.
The biomarker was developed based on the clinical problem of

extremely high opioid demands by some pain patients without
any indication of addiction. These patients were subjected
to our pharmacogenetic counseling for opioid receptor genetics
as the primary candidates coding for the main targets of this class
of drugs. The results show that the biomarker utilizing

comprehensive DNA sequence information outperforms classical
approaches at genetics-based patient classification and promises
the utilization of complex information in NGS-derived genotypes
for successful clinical diagnostics.

MATERIALS AND METHODS
Patients
The investigation followed the Declaration of Helsinki on Biomedical
Research Involving Human Subjects and was approved by the ethics
committee of the Medical Faculty of the Goethe-University, Frankfurt,
Germany (ethics protocol number E 195/08). Patients were included for
whom pharmacogenetic counseling, in particular opioid receptor genotyp-
ing, had been requested because of the perception of uncommonly high
analgesic opioid dosing requirements without any obvious clinical reason
and explicit denial of an addiction background. Using conversion to oral
morphine equivalents (OMEs; for details, see Supplementary Table 1), these
patients were divided into two groups with high (⩾400 mg day−1 OME;
n=30; mean± s.d.: 3.04±0.34 log OME) and common (⩽100 mg day− 1

OME; n=28; ‘controls’; mean± s.d.: 1.7 ± 0.24 log OME) opioid dosing
requirements for chronic pain therapy. Upon written informed consent, a
venous blood sample was taken from each patient; the samples were
anonymized and sent to our laboratory at the Institute of Clinical
Pharmacology in Frankfurt.

Opioid receptor genotyping using NGS
DNA preparation and amplification. Genomic DNA was extracted from
200 μl venous blood on a BioRobot EZ1 workstation applying the blood
and body fluid spin protocol provided in the EZ1 DNA Blood 200 μl Kit
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(Qiagen, Hilden, Germany). A multiplex amplification primer set for the
exonic sequences of the opioid receptor genes (OPRM1, OPRK1, OPRD1 and
SIGMAR1, located on chromosomes 6, 8, 1 and 9, respectively) was
designed online using a web tool (Ion Ampliseq Designer; Life
Technologies, Darmstadt, Germany) provided by the manufacturer of the
NGS device at http://www.ampliseq.com. Sequencing gaps affected only
noncoding regions (for details, see Supplementary Table 2). A total of
10 ng DNA per sample were used for the target enrichment by a multiplex
PCR and each DNA pool was amplified with the Ion AmpliSeq Library Kit
2.0 in conjunction with the Ion AmpliSeq ‘custom Primer Pool’ protocols
according to the manufacturer’s instructions (Life Technologies). After each
pool had undergone 17 PCR cycles, amplicons were digested with FuPa
Reagent partially removing the primer sequences followed by adaptors
ligation. To enable multiplexing, sequencing adaptors with short lengths of
index sequences (barcodes) were used (Ion Xpress Barcode Adapters Kit;
Life Technologies). The adaptor-ligated amplicons were then purified using
the Agentcourt AMPure XP beads (Beckman Coulter, Krefeld, Germany).
After purification, fragment libraries were normalized to a final DNA
concentration of 100 pM using the Ion Library Equalizer Kit (Life
Technologies). Equalized barcoded libraries from 10 to 12 samples were
pooled at a time. To clonally amplify the library DNA onto the Ion Sphere
Particles (Life Technologies), a volume of 2 μl of the barcoded and pooled
library was suspended to emulsion PCR using the Ion Personal Genome
Machine (PGM) Template OT2 200 Kit on the Ion OneTouch 2 system (Life
Technologies) according to the manufacturer’s recommended protocol.

DNA NGS and variant identification. The template-positive Ion Sphere
Particles were enriched on the Ion OneTouch ES (Life Technologies) and
loaded on Ion 316 v2 Chips (500 Mb of expected sequence data output).
Sequencing was performed with the Ion (PGM) system using Ion PGM 200
Sequencing Kit v2 (Life Technologies) with the 200-bp single-end run
configuration following the manufacturer’s instructions. Using the Torrent
Suite software (version 4.4.2; Life Technologies), signal processing, base
calling and the generation of unmapped and mapped BAM-files (hg19
reference genomic sequence) were performed. The variant calling (single-
nucleotide polymorphisms, multi-nucleotide polymorphisms (MNPs),
insertions (Ins) and deletions) across the hg19 reference genomic
sequence was performed with the Torrent Variant Caller Plugin with
following key parameters: minimum allele frequency = 0.1, minimum
quality = 10, minimum coverage= 6 and minimum coverage on either
strand= 0. The annotation of called variants was done with Ion Reporter
software (version 4.2.2; Life Technologies) using VCF files from the Torrent
Variant Caller as input. Data quality and coverage checks as well as variant
identification were done using the single-nucleotide polymorphism and
variation suite software (SVS version 8.3.3 for Linux 64-bit; Golden Helix,
Bozeman, MT, USA). The correctness of the genotyping was verified using
10 amplifications of the coding parts of the genes that were completely
conventionally sequenced by an independent commercial provider (LGC
GmbH, Berlin, Germany).

Data analysis
Opioid receptor genotype differences between patients with high opioid
dosage and controls were analyzed using the single-nucleotide poly-
morphism and variation suite software (SVS version 8.3.3 for Linux
64-bit; Golden Helix), the R software package (version 3.0.2 for Linux;
http://CRAN.R-project.org/) and the Matlab numerical computing environ-
ment (version 8.3.0.532, MathWorks, Natick, MA, USA). The analyses are
described briefly in the following; more detailed descriptions are provided
in the Supplementary Materials.

Assessment of group differences in single opioid receptor variant or
haplotype frequencies. A first analysis employed the classical approach
to pharmacogenetic analyses consisting of χ2 statistics with an α-level of
0.05 corrected for multiple testing according to the conservative criterion
of Bonferroni. The dominant hereditary model (DD, Dd versus dd,
where D denotes the minor allele and d the wild-type allele) was
applied. In addition, haplotypes identified in silico via the minimizing
historical recombination algorithm11 were analogously assessed. To
observe statistical power, only variants found at a frequency of 410%12

were included.

Assessment of combined genotypic group classifiers. Further analysis
addressed combinations of genetic variants employing two classical
methods comprising stepwise regression analysis and classification and

regression tree (CART) analysis. In addition, advanced approaches at
complex genetic group classifiers were used. As above approaches implicitly
assumed homogeneity within the two patient cohorts, cluster analysis was
used to reveal subgroups within each cohort. For this analysis, data were
preprocessed to obtain the genotypes at each locus that could be expected
by chance, which were obtained as the group size weighted means across
all patients, separately for each variant. Subsequently, for each variant and
patient the directed deviations were calculated as the difference between
the actual observation and the above calculated expectation. These
deviations were submitted to cluster analysis using the Ward algorithm
and the Jaccard distance calculated as 1− Jaccard coefficient, the latter being
identical to the percentage of nonzero values that differ. In a final step, these
clusters served for the training of a k-nearest neighbor (kNN)13 classifier with
k=3. Furthermore, the distance function was optimized by selection of the
most informative variables using computed ABC analysis14 that identified
those genetic variants that promised to provide the best distinction
between the two patient groups based on the difference in absolute group
means of the number of rare-type alleles.

Classification performance analyses. For all single and complex classifiers
cross-validated prediction performances were assessed. Test data sets
(sample size n= 20) were drawn from the study cohort that always
included (1) seven additional patients with high opioid dosage, and
expanded by (2) further three patients randomly chosen from the already
analyzed group with high opioid dosage to obtain a sufficiently large
number for accuracy calculations and (3) 10 patients randomly chosen
from the control group. Testing was 100 times repeated. The diagnostic
accuracy, test sensitivity, specificity and positive predictive value were
calculated using standard equations.

RESULTS
Group differences in single opioid receptor variant frequencies
Nucleotide information was completely available and sequencing
runs met the standard requirements. The average throughput was
540 mega-bases, using 316 sequencing chips, which is within the
upper third of the expected sequencing output according to the
manufacturer’s instructions, and the average chip loading was
71%, meeting the all expected assay quality parameters criteria.
NGS identified 152 variants in opioid receptor genes in the whole

study population (Figure 1). A number of 100, 42, 3 and 7 variants
were located in the covered sequences of the OPRM1, OPRK1,
OPRD1 and SIGMAR1 genes. Group differences in the allelic
frequencies were analyzed for 77 gene loci where variant alleles
were found in at least 10% of the patients. This resulted in a
corrected α-level of 0.000649351 as the upper limit for acceptance of
a significant difference (Figure 2). A P-value below this limit resulted
for the group frequency comparisons of the Chr6:154451812-single-
nucleotide variation (SNV) in the μ-opioid receptor gene OPRM1
(P=0.00049, α-corrected P=0.038) and for the Chr8:54147491-SNV
in the κ-opioid receptor gene OPRK1 (P=0.000278, α-corrected
P=0.021), whereas a few other variants in the μ-opioid receptor
gene, that is, Chr6:154444436-Ins (uncorrected P=0.0169),
Chr6:154452687-MNP (uncorrected P=0.036) and Chr6:154567863-
SNV (uncorrected P=0.0174), merely displayed differences at an
uncorrected significance level and were therefore rejected.
All opioid receptor genetic variants previously proposed as

modulating opioid requirements (Table 1) failed to display
significant group differences with respect to their allelic frequen-
cies. For example, the variant OPRM1 118 G allele was found in 9
patients requiring high opioid doses and in 13 controls
(uncorrected P= 0.589). However, none of the variants identified
in this classical analysis provided an acceptable accuracy for the
assignment of a patient to either group (51.5 ± 2% and 51.4 ± 5%)
and the diagnostic sensitivities of these markers were also low
(Table 3). Furthermore, a total of 24 different genetic variants
carried only by pain patients who received very high opioid doses
but not by any of the control patients provided an immediate
biologically plausible cause for reduced or absent opioid receptor
function (Table 2).
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Predictions using combined genetic markers obtained with
classical approaches
An only moderate improvement of the opioid receptor genetics-
based group classification performance was obtained using classical
assessments of combined genotypic group classifiers. Stepwise

regression analysis identified, based on the Po0.05 inclusion and
P40.1 rejection criteria, n=6 opioid receptor variants, that is,
Chr6:154443510-SNV, Chr6:154449106-Ins, Chr6:154450991-MIX,
Chr6:154451812-SNV, Chr8:54147491-SNV and Chr8:54155452-SNV,
as suitable components of a combined genotypic classifier for the

SIGMAR1

Figure 1. Overview of the opioid receptor genetic pattern of the present patients (n= 30 and 28 pain patients with high and average opioid
dosage, respectively). The denominations of gene loci where variants have been detected is given at the bottom of the figure. (Top) Bar plot of
the frequency of carriers of single-nucleotide polymorphisms (SNPs), with bar lengths indicating the percentage of patients carrying a variant
allele (either heterozygously or homozygously); bars in the upper direction (yellow) show the high opioid patients (n= 30) and bars directed
toward the bottom (dark gray) show the controls (n= 28). (Bottom) Matrix plot of the occurrence of variants (columns) per patient (lines; color
coding is white: wild type, yellow: heterozygous, red: homozygous rare allele), separated by gaps for the two groups of patients and for the
four opioid receptor genes (OPRD1, OPRM1, OPRK1 and SIGMAR1) from the left to the right; the codes at the right are the patient’s codes left in
the figure for potential data validation purposes). For better visibility, the variants are numbered and the abscissa details are given in
an enlarged version in the Supplementary Materials (DetailedAbscissa_Figure1.pdf ).
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present group assignment. A linear regression model using these
alleles performed with an average accuracy of 61.7± 6% on the 100
randomly drawn test data sets (Table 3). A decision tree classifier
constructed with the CART algorithm used n=12 opioid receptor
variants, that is, Chr6:154360483-SNV, Chr6:154414666-SNV,
Chr6:154439865-SNV, Chr6:154442128-SNV, Chr6:154443510-SNV,
Chr6:154450065-SNV, Chr6:154450991-MIX, Chr6:154450996-MNP,
Chr6:154451812-SNV, Chr6:154567863-SNV, Chr8:54147491-SNV
and Chr8:54155452-SNV. The prediction of group assignment using

this decision tree performed with an average accuracy of 74.4± 4%
on the 100 randomly drawn test data sets (Table 3).

Predictions using advanced approaches at complex genetic group
classifiers
A Ward clustering using the Jaccard distance on all genetic markers
led to clusters of n=5 each in both the high opioid patients and the
controls. The kNN classifier was trained with the pattern of each
cluster per group that resulted in a number of typical patterns given
by the number of clusters per patient group. Each of the 100
randomly drawn test data sets was compared in the high-
dimensional data space with the obtained complete genotypes
according to the Jaccard distance, and the case was assigned to
that cluster to which the majority of its three neighbors belonged.
The performance of this classifier on the test data resulted in an
accuracy of 74.4 ± 7% matching that of the CART-derived classifier
(Table 3). This result could be improved by eliminating those
genetic markers that only introduced noise into the classifier. ABC
analysis revealed that the genetic information contained at 34 loci
in opioid receptor genes suffices for accurate group assignment to
either patients with high opioid dosage or controls (Figure 3). With
these markers, three clusters were identified for the control group,
whereas four clusters appeared in the high opioid group. The
performance of this kNN classifier on the test data, obtained as
described in the previous paragraph, resulted in an accuracy of
80.6± 4% (Table 3).

DISCUSSION
The present analysis showed that patterns of opioid receptor
genotypes indeed provide a basis for the high opioid dose
occasionally observed in pain patients. However, this was obtained
using a ‘self-learning subsymbolic high-dimensional classifying
biomarker’. That is, in machine learning a classifier is called
symbolic if it can in principle answer the question of why a given
data set has been assigned to a particular group; however, it is in
principle not possible to get a reason for a particular classification.
The presently used kNN classifier belongs to this type of algorithms.
Its functioning is like an associative memory. For a given case the
kNN classifier searches its data base of already learned correct
classifications in order to find those cases that are most similar to
the given data set.15 If a data set has been classified successfully to
its proper class, the data base of the classifier can be enhanced with
this data set and classification (‘machine learning’). In analogy to the

Table 1. Variants in opioid receptor genes for which functional consequences for opioid-based analgesic therapy had been reported previously,
including example references for each variant

Gene cDNA Nucleotide position Effect dbSNP Clinical consequence Reference

OPRM1 c.575G4T chr6:154411245 p.Cys192Phe rs62638690 Heroin and cocaine addiction 26

c.1206A4T chr6:154414446 p.Gln402His rs540825 Decreased effects in response to antidepressants 27

c.118A4G chr6:154360797 p.Asn40Asp rs1799971 Decreased effects in response to opioids 28

c.17C4T chr6:154360696 p.Ala6Val rs1799972 Heroin addiction; opioid dependence 29

c.172C4T chr6:154039373 p.Gln5His rs6912029 Change-in-libido side effects; insomnia side effects 30

c.1231C4T chr6:154107531 p.Glu411AMB rs677830 Decreased effects in response to opioids 27

c.440C4G chr6:154089975 p.Ser47Cys rs17174794 Heroin and cocaine addiction 26

c.1323A4G chr6:154414563 p.(= ) rs675026 Increased risk in coronary heart disease 31

c.1333C4T chr6:154414573 p.(= ) rs562859 Decreased effects in response to antidepressants 32

OPRD1 c.921C4T chr1:29189597 p.(= ) rs2234918 Increased effect sizes of pain 33

OPRK1 c.36G4T chr8:54163562 p.(= ) rs1051660 Heroin addiction; alcohol dependence 34

c.846C4T chr8:54142154 p.(= ) rs16918875 Heroin addiction; alcohol dependence 35

c.843A4G chr8:54142157 p.(= ) rs702764 Heroin addiction; alcohol dependence 35

SIGMAR1 c.5A4C chr9:34637690 p.Gln2Pro rs1800866 Increased risk for developing Alzheimer’s disease; decreased
effects in response to antidepressants

36

Abbreviations: cDNA, complementary DNA; dbSNP, single-nucleotide polymorphism database; p.(= ), synonymous variant.

Figure 2. Manhattan plot showing the results of the genotype
association test using the dominant hereditary model. Only
chromosomes 1, 6, 8 and 9 are shown where the four opioid
receptor genes are located. In addition, the α-levels before and after
correction for multiple testing according to Bonferroni are indicated
as horizontal lines.
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subsymbolic/symbolic concept in machine learning we define a
subsymbolic biomarker as a pattern of markers, here represented
by the genetic changes, where (1) none of the markers needs to be
directly related to any known biological function/process or a
cellular component, although this is not excluded; and (2) the
sequence of marker changes is not important, that is, the marker
does not retrieve its classificatory value by its place in a sequence
such as a nucleic or amino acid sequence in genes or proteins. In
contrast, a symbolic biomarker would represent a genetic change
that can be directly related to a biological function/process or a
cellular component. However, if the pattern of the subsymbolic
biomarkers is observed in an organism, it can be connected to
biological function processes or a cellular component. This points at
emergent properties in genetics.10

A subsymbolic high-dimensional classifying biomarker uses
subsymbolic biomarkers and subsymbolic classifiers in order to
decide between different biological conditions/classes/clusters. It
is called self-learning, if successfully classified data are added to
the knowledge base of the classifier. This can be called a ‘self-
learning subsymbolic high-dimensional classifying biomarker’

(Figure 4). The present information from 30+28 patients can be
successively enlarged by adding further patients. In the case that a
new opioid receptor genotype pattern will be correctly identified
by comparison with the present information from these 58
patients, the biomarker would be successful. In the opposite case,
a wrongly classified genotype pattern can be implemented into
the present data basis and new ABC marker sets. Jaccard distances
can be computed to improve further diagnoses by a continuously
developing system. Thus, the biomarker can ‘learn’.
One of the keys to the success of the classification was the

accounting for the heterogeneity of the patients. Beyond the main
phenotype of high opioid dosage, the present patients were
indeed a heterogeneous group. They had been submitted to our
pharmacogenetic counseling mostly without further details of the
clinical background except for a few cases such as those
presented. Therefore, patients have different diseases underlying
the pain. The high opioid doses may be accidental as most
patients were sent from University tertiary care centers where the
physicians were more inclined to raise the opioid doses, whereas
in the periphery, the same patients might have been labeled as

Table 2. Genetic variants found only in patients receiving high opioid doses

Gene Variant DNA change Molecular consequence Potential functional effecta dbSNP ID

OPRK1 54139145-SNV c.*2712C4T Noncoding Reduced transcriptional efficiency rs117602211
54141429-SNV c.*428G4A Noncoding Reduced transcriptional efficiency rs182444059
54147531-SNV c.398T4C p.Ile133Thr Missense mutation rs146859342

OPRM1 154411110-SNV c.440C4G p.Ser147Cys Missense mutation rs17174794
154411245-SNV c.575G4T p.Cys192Phe Missense mutation rs62638690
154439865-SNV c.9C4T — — rs11575858
154439876-SNV c.*20G4A Noncoding Reduced transcriptional efficiency rs200778856
154443060-SNV — — — —

154443067-SNV — — — —

154443459-SNV — — — —

154443510-SNV c.*3689A4G Noncoding Reduced transcriptional efficiency rs188792757
154446218-SNV — — — rs190450820
154448521-Ins — — — —

154449106-Ins — — — rs73022035
154450157-SNV — — — —

154450988-MIX — — — —

154450973-MNP — — — —

154451224-MIX — — — —

154451843-SNV c.*11987C4T Noncoding Reduced transcriptional efficiency rs191957030
154452251-SNV c.*2395G4C Noncoding Reduced transcriptional efficiency rs644261
154453066-MIX c.*13210A4G Noncoding Reduced transcriptional efficiency rs184783311
154453095-SNV — — — —

SIGMAR1 34637690-SNV c.5A4C p.Gln2Pro Missense mutation rs1800866

Abbreviations: dbSNP, single-nucleotide polymorphism database; mutation variants are as follows: Ins, insertion; MIX, a mixture of variation types; MNP, multi-
nucleotide polymorphism; SNV, single-nucleotide variation. aPotential consequences according to this review.21

Table 3. Performances of selected classifiers to predict a patient with high opioid dosing

Classifier Group difference
(P-uncorrected)*

No. of
genes

Sensitivity (%) Specificity (%) PPV (%) Accuracy (%) No. of 7 independent
samples correct

Chr6:154360797-SNV P= 0.589 1 13.9 87 51 50.6± 5 0
Chr6:154451812-SNV 0.00049 1 2.9 100 29 51.5± 2 0
Chr8:54147491-SNV 0.000278 1 10.5 92.2 52 51.4± 5 4
Regression — 6 67.7 55.7 60 61.7± 6 4
CART — 12 92.6 56.1 68 74.4± 4 3
Clustering+kNN classifier — 152 75.3 73.5 74 74.4± 7 5
ABC analysis+clustering+kNN
classifier

— 34 93.7 67.4 74 80.6± 4 4

Abbreviations: CART, classification and regression tree; kNN, k-nearest neighbor; PPV, positive predictive value; SNV, single-nucleotide variation. χ2 test: the α-
corrected significance level was 0.000649351.
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opioid resistant already at doses below 400 mg OME per day and
therefore not included into this analysis. An opioid resistance
might indeed apply to one of the presented patients as discussed
below. Thus, the heterogeneity of opioid-treated pain patients is a
clinical reality and has to be considered in a successful biomarker.
Here, a self-learning biomarker provides an ideal basis.
However, although the subsymbolic biomarker successfully

classified the patients, the question remained of how genetic
changes of no singular identifiable major molecular consequence
can nevertheless underlie the phenotype. A possible explanation
may be the above-mentioned emergent properties in genetics10

to which the biomarker pointed. Specifically, we hypothesize that
from the accumulation of several genetic variants that mostly
provide only small quantitative modulations of gene transcription,
a qualitative genetic change can emerge toward a substantially
more or less efficiently transcribed gene that then gains the
phenotypic consequences that were not produced by any single
variant alone.
Indeed, molecular knowledge about members of the ‘A’ set of

the ABC analysis (Figure 3) supports this hypothesis, and this will be
illustrated by two examples. The Chr6:154451812-SNV, and various
further variants that occurred only in patients receiving high
analgesic opioid doses (not shown), is noncoding; yet, it is known
that such variants can affect mRNA splicing, stability and structure,
resulting in a reduced transcriptional efficiency.16,17 Indeed,
genome-wide association studies yielded that besides mutations

in the coding regions of genes, even mutations in noncoding and
intergenic regions can be associated with diseases.18 These changes
can affect the function of proteins, change the cellular response
to therapeutic targets and can explain the different responses
of individual patients to medications.19 Furthermore, the
Chr8:54147491-SNV variant (c.438G4T) changes the codon ATA,
which translates to isoleucine, to codon ATC, which also translates
to isoleucine. Although apparently this mutation does not lead to
an alteration in the primary polypeptide sequence, that is, it is
synonymous, this kind of mutation is now widely acknowledged to
be able to cause changes in protein expression, conformation and
function.20 Recent genetic and biomedical studies have identified
multiple mechanisms that provide an indication of the means by
which synonymous mutations can affect physiological changes and
consequently influence disease.21

A synonymous substitution might produce changes in the
phenotype by affecting splicing that in consequence can lead to a
shortened mRNA and subsequently a nonfunctional protein.21,22

Moreover, synonymous mutations might alter the mRNA stability,
leading to faster degradation and reduced protein expression.23,24

Another possibility of how synonymous mutations may influence
protein levels is affecting translation elongation. The relative
synonymous codon usage (RSCU) value represents the local
translation elongation rates and is directly linked with protein
expression, as the speed of translation is often important for
accurate protein folding. For example, a negative ΔRSCU value

Figure 3. Identification of those genetic variants that promised to provide the comparatively best distinction between the two patient groups.
The bar plot shows the absolute group size standardized differences of the occurrences of each variant between the two patients groups. The
34 bars left of the solid vertical line indicate the genetic variants found by a computed ABC analysis (right upper part of the figure) to provide
a statistically valid set of markers to be included in a complex biomarker. At the upper right corner is the ABC plot14 of the cumulative
distribution function of the additional fraction of the absolute group differences in allelic numbers (solid curved line). In addition, ABC plots of
the identity distribution, xi= constant (dotted line, that is, each genetic variant occurs at the same number in each group), and of the uniform
distribution in the data range (dotted line, that is, each variant allele had the same chance to occur) are shown. Compared with the latter
distributions, the solid curved line clearly indicates a highly unequal distribution of the group differences in the numbers of variant alleles.
Further marks in this plot consist of a light grey and a darker grey star denoting the so-called Pareto and BreakEven points, respectively. The
Pareto point A (Ax, Ay) is the point at the smallest distance (left oblique black line) to the ideal point at xy where the effort would be zero to
obtain the whole yield. The BreakEven point B (Bx, By) marks the point on the ABC curve where its slope, dY/dE, equals 1, that is, the so-called
profit gain dABC equals 1. Beyond that point, more information can only be gained with inadequately high efforts. The ABC analysis comes
from economical informatics and, in the present context, aims at identifying the most informative genetic variant for group classification by
dividing the 152 variants into 3 distinct subsets. Set A should contain the ‘critical few’, that is, those elements that allow obtaining a maximum
of yield with a minimal effort.14 Set B comprises those elements where an increase in effort is proportional to the increase in yield. In contrast,
set C contains the ‘trivial many’, that is, those elements that are not worth to be considered a biomarker. As a result, set A was used to establish
a subsymbolic classifying biomarker.
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(when a mutation introduces a rarer codon) might lead to a slower
rate of translation elongation compared with the wild type.21 The
c.438G4T variant causes, as a consequence of codon modifica-
tion, a change in the RSCU value (the RSCU value changes from
1.41 to 0.51 with ΔRSCU=− 0.9)25 as queried from the Codon
Usage Database at www.kazusa.or.jp/codon/. A negative ΔRSCU
value means that the mutation introduces a rarer codon and this
might be associated with a slower rate of translation elongation
compared with the wild type.21

Taking this idea one step further, multiple mutations that affect
codon usage thus might increase or decrease translation rates and
therefore appreciably bias protein expression. In its consequence,
the opioidergic system might have been altered to a degree that
translated into a clinical phenotype. Specifically, the present
subsymbolic classifying biomarker included 21 OPRM1 variants, 9
OPRK1 variants and 3 OPRD1 variants. All coded receptors are
involved in the endogenous nocifensive system. Hence, a
pharmacological interpretation of the present results may involve

the hypothesis of a general weakening of the endogenous opioid
system, mainly but not exclusively μ-opioidergic, that was caused
by the accumulation of genetic variants. This may have finally
rendered the patient as nearly ‘opioid resistant’, directly because
of a reduced activity of exogenous μ-opioid agonists and
indirectly also owing to a disturbed opioidergic system. Alter-
natively, as the subsymbolic nature of the biomarker involves that
its classification performance cannot be definitely assigned to one
of its components, it could turn out that the main contributors to
the successful classification are variants in the OPRM1 gene. This is
also well within the possibility of a self-learning classifier that, as
explained above, by successively re-evaluating and modifying its
composition, may still evolve toward a OPRM1 variant-based
classifier. In that case, the association with a reduced activity of
mainly μ-opioid receptor agonists would become straightforward.
This analysis showed that opioid receptor genotyping, consis-

tent with biological plausibility, has the potential to provide the
desired predictively of particular (clinical) phenotypes as demon-
strated with high opioid dose demands in pain patients. This may
be obtained with a novel type of biomarker, called ‘self-learning
subsymbolic high-dimensional classifying biomarker’. A self-
learning biomarker offers an ideal basis to account for the
heterogeneity of patients as it uses flexible patterns for the
prediction. This is a novel concept of biomarkers and it is not
limited to the present clinical diagnostic tasks. Related to this
concept, results of the analysis can also be taken as evidence for
emergent properties in genetics.10
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Figure 4. Schematic representation of main features of a prediction
using the proposed ‘high-dimensional subsymbolic biomarker’
(from top to bottom). (a) The biomarker creation starts from the
analysis of the relevant single markers, gene sequences, symbolized
as arbitrarily colored squares (for example, let this be nucleotides
and their heterozygous or homozygous presences). In the present
analysis, let these squares denote the variants in the opioid receptor
genes. (b) Based on the clinical background, the complex markers
were grouped into either high-opioid doses demanding patients
(orange small squares at the right) or controls (blue small squares at
the right). Subgroups within the groups are possible and should be
addressed by clustering (not shown). (c) From these composed
makers, ABC analysis identifies the relevant submarkers that are
most informative for the prediction (noninformative submarkers
grayed out). (d) A new patient is analyzed (markers with red
margins). Based on distance measuring in the high-dimensional
space, this patient will be assigned to the most similar group, that is,
to its nearest neighbors in the high-dimensional space based on the
chosen distance measure (here, the Jaccard distance was used for
genetic markers being either 0, 1 or 2). Concomitantly a learning
process of the biomarker starts. In the present example, it proves
useful, in a new ABC analysis, to include a further marker that, in a
previous ABC analysis, had been found uninformative (third marker
from the left, green margins). The process is repeated (dotted arrow)
with each prediction where the disease background is known, that
is, the biomarker ‘learns’ in the sense of Artificial Intelligence, where
valid information about a patient’s background is used to improve
the marker. This will improve its predictive accuracy in cases where
the background is not known.
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