Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Electrocatalytic CO2 reduction powered by renewable electricity is a promising technology for sustainable fuel and chemical production but accurate and reproducible analytical methods are required to advance the basic and applied science. Here a comprehensive analytical system is designed to capture numerous operating parameters in real time with automated and standardized data analysis.
Mesoscopic mass transport is often ignored but it can influence electrocatalytic processes. This Analysis introduces a simple multi-scale model that couples diffusion to electrochemical surface kinetics and shows how mesoscopic mass transport determines product selectivity through catalyst morphology.
The electrochemical synthesis of organic acids is often performed in alkaline electrolytes. This Analysis presents a techno-economic analysis highlighting the challenges involved in using such electrolytes for downstream product separation and electrolyte recovery.