Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 96 results
Advanced filters: Author: AM Lei Clear advanced filters
  • The nature of unconventional charge density wave in kagome metals is currently under intense debate. Here the authors report the coexistence of the 2 × 2 × 1 charge density wave in the kagome sublattice and the Sb 5p-electron assisted 2 × 2 × 2 charge density waves in CsV3Sb5.

    • Haoxiang Li
    • G. Fabbris
    • H. Miao
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-7
  • While Bell inequalities have been violated several times—mostly in photonic systems—their violations within particle physics experiments are less explored. Here, the BESIII Collaboration showcases Bell-violating nonlocal correlations between entangled hyperon pairs.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Adipose tissue expansion occurs via enlargement of adipocytes as well as the generation of new fat cells, the latter being associated with more favorable metabolic outcomes. Here, the authors show that activation of adipocyte Piezo1 results in release of FGF1 and stimulates the differentiation of adipocyte precursor cells.

    • ShengPeng Wang
    • Shuang Cao
    • Stefan Offermanns
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • The semileptonic decay channels of the Λc baryon can give important insights into weak interaction, but decay into a neutron, positron and electron neutrino has not been reported so far, due to difficulties in the final products’ identification. Here, the BESIII Collaboration reports its observation in e+e- collision data, exploiting machine-learning-based identification techniques.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Investigating the inner structure of baryons is important to further our understanding of the strong interaction. Here, the BESIII Collaboration extracts the absolute value of the ratio of the electric to magnetic form factors and its relative phase for e + e − → J/ψ → ΛΣ decays, enhancing the signal thanks to the vacuum polarisation effect at the J/ψ peak.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-9
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The expansion of the white adipose tissue during obesity is accompanied by increased cellular stress, but factors that protect adipocytes from cell death are not well known. Here the authors report that the transcriptional co-activators YAP and TAZ are activated in adipocytes during obesity, which increases adipocyte survival through the proapoptotic factor BIM.

    • Lei Wang
    • ShengPeng Wang
    • Stefan Offermanns
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.

    • Rotem Botvinik-Nezer
    • Felix Holzmeister
    • Tom Schonberg
    Research
    Nature
    Volume: 582, P: 84-88
  • Using spin-entangled baryon–antibaryon pairs, the BESIII Collaboration reports on high-precision measurements of potential charge conjugation and parity (CP)-symmetry-violating effects in hadrons.

    • M. Ablikim
    • M. N. Achasov
    • J. H. Zou
    ResearchOpen Access
    Nature
    Volume: 606, P: 64-69
  • Morphometric analyses of hominid teeth from Early to Middle Pleistocene Java reveal that Meganthropus was a Pleistocene Indonesian hominid distinct from Pongo, Gigantopithecus and Homo, and that molars previously assigned to Homo erectus are more likely to belong to Meganthropus.

    • Clément Zanolli
    • Ottmar Kullmer
    • Roberto Macchiarelli
    Research
    Nature Ecology & Evolution
    Volume: 3, P: 755-764
  • Multidimensional spectroscopic tools are important to explore the details of molecular dynamics. Here the authors use shaped pulses to demonstrate a 3D fluorescence spectroscopy method to extract the fourth and higher-order nonlinear responses in light-molecule interaction.

    • Stefan Mueller
    • Julian Lüttig
    • Tobias Brixner
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-11
  • The authors report a crossover from easy-plane to easy-axis magnetic anisotropy in monolayer RuCl3, which they attribute to an in-plane distortion of the Cl atoms observed in electron diffraction that modify the non-Kitaev exchange terms. The results are useful for overcoming the challenge of realizing a quantum spin liquid.

    • Bowen Yang
    • Yin Min Goh
    • Adam W. Tsen
    Research
    Nature Materials
    Volume: 22, P: 50-57
  • Constructing a minimal protein machinery for self-division of membrane compartments is a major goal of bottom-up synthetic biology. Here, authors achieved the assembly, placement and onset of contraction of a minimal division ring in lipid vesicles.

    • Shunshi Kohyama
    • Adrián Merino-Salomón
    • Petra Schwille
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-14
  • The genetic architecture underlying brainstem regions and how this links to common brain disorders is not well understood. Here, the authors use MRI and GWAS data from 27,034 individuals to identify genetic and morphological brainstem features that influence common brain disorders.

    • Torbjørn Elvsåshagen
    • Shahram Bahrami
    • Tobias Kaufmann
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Rhabdopeptides are synthesized by non-ribosomal peptide synthetases (NRPSs) and the multiple NRPS subunits interact through docking domains (DD). Here the authors provide insights into DD interaction patterns and present the structures of three N-terminal docking domains (NDD) and a NDD-CDD complex and derive a set of recognition rules for DD interactions.

    • Carolin Hacker
    • Xiaofeng Cai
    • Jens Wöhnert
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-11
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Synthetic polymer wires, which contain short oligonucleotides extending from each repeat, can assemble into predesigned routings on two- and three-dimensional DNA origami templates.

    • Jakob Bach Knudsen
    • Lei Liu
    • Kurt V. Gothelf
    Research
    Nature Nanotechnology
    Volume: 10, P: 892-898
  • In contrast to flavonols, the functions of plant flavones are largely unknown. Here, the authors report the two differentially evolved glucosyltranferases (flavone 7-O-glucosyltransferase and flavone 5-O-glucosyltransferase) determine natural variation of rice flavone accumulation and UV-tolerance.

    • Meng Peng
    • Raheel Shahzad
    • Jie Luo
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-12
  • How cell division is regulated with spatiotemporal precision is not fully understood. Here the authors show that a bacterial protein undergoes phase separation through surface-assisted condensation to enrich the tubulin homolog FtsZ in M. xanthus cell division.

    • Beatrice Ramm
    • Dominik Schumacher
    • Lotte Søgaard-Andersen
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-24
  • There's a lack of knowledge on the extent to which mRNAs are transported across tissues in plants. Now a study combining RNA-seq with grafting experiments identifies 2,006 genes in Arabidopsis thaliana that generate mobile mRNAs.

    • Christoph J. Thieme
    • Monica Rojas-Triana
    • Friedrich Kragler
    Research
    Nature Plants
    Volume: 1, P: 1-9