Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–4 of 4 results
Advanced filters: Author: Alexander Gumennik Clear advanced filters
  • Silicon nanospheres could be of interest for applications in electronics and optoelectronics. Here, Gumenniket al. demonstrate a nanosphere fabrication process based on an optical fibre drawing technique that is able to produce p and n-type spheres paired into rectifying bispherical junctions.

    • Alexander Gumennik
    • Lei Wei
    • Yoel Fink
    Research
    Nature Communications
    Volume: 4, P: 1-8
  • The thermal-draw technique offers fibre devices with a multiplicity of geometries, but these are constrainted to being translationally symmetric. Here, the authors disrupt this symmetry by applying selective capillary instability, resulting in electrically connected spherical photodetecting elements.

    • Michael Rein
    • Etgar Levy
    • Yoel Fink
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-8
  • Capillary breakup in multimaterial fibers is explored for the self-assembly of optoelectronic systems. However, its insights primarily stem from numerical simulations, qualitative at best. The authors formulate an analytical model of such breakup, obtaining a window in the governing parameters where the generally chaotic breakup becomes predictable and thus engineerable.

    • Camila Faccini de Lima
    • Fan Wang
    • Alexander Gumennik
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-17
  • Micro-electromechanical systems fabrication techniques are based on silicon micromachining processes, resulting in rigid and low aspect ratio structures. Here the authors demonstrate a flexible, high aspect ratio micro-electromechanical system in fibre enabled by an electrostrictive ferrorelaxor terpolymer layer.

    • Tural Khudiyev
    • Jefferson Clayton
    • Yoel Fink
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-7