Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 169 results
Advanced filters: Author: Anne Huber Clear advanced filters
  • The International Brain Laboratory presents a brain-wide electrophysiological map obtained from pooling data from 12 laboratories that performed the same standardized perceptual decision-making task in mice.

    • Leenoy Meshulam
    • Dora Angelaki
    • Ilana B. Witten
    ResearchOpen Access
    Nature
    Volume: 645, P: 177-191
  • CELLFIE, a CRISPR platform for optimizing cell-based immunotherapies, identifies gene knockouts that enhance CAR T cell efficacy using in vitro and in vivo screens.

    • Paul Datlinger
    • Eugenia V. Pankevich
    • Christoph Bock
    ResearchOpen Access
    Nature
    P: 1-10
  • Loss of epigenetic information is a hallmark of cellular aging. Here, authors examine changes in the epigenetic landscape at three stages of Huntington neurodegenerative disease (HD) in two mouse models and demonstrate accelerated de-repression of developmental genes in HD striatal neurons.

    • Baptiste Brulé
    • Rafael Alcalá-Vida
    • Karine Merienne
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Using 25 years of satellite chlorophyll a data, the authors demonstrate significant and widespread changes in the amplitude, timing, duration and seasonality of Southern Ocean phytoplankton blooms. Such changes threaten ecosystem services and can impact global climate by altering natural CO2 uptake.

    • Sandy J. Thomalla
    • Sarah-Anne Nicholson
    • Marié E. Smith
    ResearchOpen Access
    Nature Climate Change
    Volume: 13, P: 975-984
  • The dynamics of chromatin and transcriptional changes underlying Huntington’s disease remain poorly understood. Here the authors use a Huntington’s mouse model to profile the striatal chromatin landscape, finding that the Huntington’s mutation accelerates age-dependent epigenetic and transcriptional changes, and locally affects 3D chromatin organization.

    • Rafael Alcalá-Vida
    • Jonathan Seguin
    • Karine Merienne
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-16
  • The activity of immune cells can be regulated by the microbiome. Here, the authors show that the fatty acids pentanoate and butyrate—normally released by the microbiome—increase the anti-tumour activity of cytotoxic T lymphocytes and chimeric antigen receptor T cells through metabolic and epigenetic reprogramming.

    • Maik Luu
    • Zeno Riester
    • Alexander Visekruna
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-12
  • Understanding the emergence, evolution, and transmission of antibiotic resistance genes (ARGs) is essential to combat antimicrobial resistance. Here, Munk et al. analyse ARGs in hundreds of sewage samples from 101 countries and describe regional patterns, diverse genetic environments of common ARGs, and ARG-specific transmission patterns.

    • Patrick Munk
    • Christian Brinch
    • Frank M. Aarestrup
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-16
  • A genome-wide association study identifies 17 genetic loci that are associated with the risk of myeloproliferative neoplasms (MPNs), and shows that the modulation of haematopoietic stem cell function drives MPN risk.

    • Erik L. Bao
    • Satish K. Nandakumar
    • Vijay G. Sankaran
    Research
    Nature
    Volume: 586, P: 769-775
  • Homologous recombination deficiency is linked with platinum-based chemotherapy response in triple-negative breast cancer (TNBC) but methods to clinically identify these patients are lacking. Here, using patient-derived xenografts of TNBC the authors demonstrate that shallow HRD is predictive of response to platinum-based chemotherapy.

    • Petra ter Brugge
    • Sarah C. Moser
    • Elisabetta Marangoni
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • Small regulatory RNAs (sRNAs) often act in concert with the RNA-chaperone Hfq to regulate the expression of multiple target transcripts in bacteria. Here, the authors identify Hfq-interacting sRNAs and their targets in the pathogen Vibrio cholerae, including an RNA sponge that binds and inactivates four sRNAs that modulate the quorum sensing pathway.

    • Michaela Huber
    • Anne Lippegaus
    • Kai Papenfort
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-14
  • The vagus nerve transmits signals between the gut and the brain thereby tuning motivated behavior to physiological needs. Here, the authors show that acute non-invasive stimulation of the vagus nerve via the ear enhances the invigoration of effort for rewards.

    • Monja P. Neuser
    • Vanessa Teckentrup
    • Nils B. Kroemer
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-11
  • Plasma turbulence is the main driver to deteriorate the performance of fusion power plants. This work presents an unprecedented comparison of plasma turbulence between experiment and simulation, proving that the gyrokinetic model GENE reached a high level of maturity to predict core turbulence.

    • Klara Höfler
    • Tobias Görler
    • S. Zoletnik
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • SUMOylation is a mechanism of posttranslational modification involved in eukaryotic cell homeostasis. Here the authors report that mice unable to control SUMOylation in the adrenal cortex develop a selective defect in glucocorticoid production due to disrupted differentiation of cells involved in steroid hormone synthesis.

    • Damien Dufour
    • Typhanie Dumontet
    • Antoine Martinez
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-18
  • Multiferroics, materials that exhibit two or more ferroic orders, are potentially useful for data storage if the coupling between these orders can be exploited. Here the authors elucidate how the magnetism in ferrimagnetic nanopillars can control the electric polarization of a surrounding matrix.

    • Carolin Schmitz-Antoniak
    • Detlef Schmitz
    • Heiko Wende
    ResearchOpen Access
    Nature Communications
    Volume: 4, P: 1-8
  • Abnormally expressed circular RNAs (circRNAs) represent an unexplored source of tumor-specific antigens in cancer. Here, the authors developed an immunopeptidomics workflow to identify human leukocyte antigen bound peptides specifically derived from the potential translation of these transcripts.

    • Humberto J. Ferreira
    • Brian J. Stevenson
    • Michal Bassani-Sternberg
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-18
  • Familial cortical myoclonic tremor with epilepsy (FAME) is a slowly progressing cortical tremor mapping to various genomic loci, including intronic expansions in SAMD12 for FAME1. Here, Florian et al. describe mixed intronic TTTTA/TTTCA expansions of various lengths in the first intron of MARCH6 as a cause of FAME3.

    • Rahel T. Florian
    • Florian Kraft
    • Christel Depienne
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-14
  • More than 90% of genetic variants associated with type 2 diabetes occur in non-coding regions. Scott et al. report genomes, epigenomes and transcriptomes of skeletal muscle from 271 participants with a range of glucose tolerances, revealing a genetic regulatory architecture enriched in muscle stretch/super enhancers.

    • Laura J. Scott
    • Michael R. Erdos
    • Stephen C. J. Parker
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-12
  • Renal cancer accounts for 2.4% of all adult cancers and its incidence is increasing worldwide. Here, the authors carry out genome and transcriptome sequencing of clear cell renal cell carcinomas (ccRCCs) and highlight genomic aberrations and biological pathways underlying ccRCC tumorigenesis.

    • Ghislaine Scelo
    • Yasser Riazalhosseini
    • G. Mark Lathrop
    Research
    Nature Communications
    Volume: 5, P: 1-13
  • Batch effects can limit the usefulness of image-based profiling data. Here, authors benchmark ten popular batch correction techniques on a large Cell Painting dataset, evaluating multiple metrics. They identify Harmony and Seurat RPCA as top methods across diverse complex scenarios.

    • John Arevalo
    • Ellen Su
    • Shantanu Singh
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-12
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352