Algorithmic decisions have a history of harming already marginalized populations. In an effort to combat these discriminative patterns, data-driven methods are used to comprehend these patterns, and recently also to identify disadvantaged communities to allocate resources. Huynh et al. analyse one of these tools and show a concerning sensitivity to input parameters that can lead to unintentional biases with substantial financial consequences.
- Benjamin Q. Huynh
- Elizabeth T. Chin
- David H. Rehkopf