Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 85 results
Advanced filters: Author: Bin (Amber) Zhang Clear advanced filters
  • Binning is an essential step in genome-resolved metagenomic analysis in which assembled contigs originating from the same source population are clustered. However it is challenging, especially for low abundance microbial species. Here the authors introduce a toolkit that integrates multiple prominent binning tools and AI for efficient and high-resolution recovery of non-redundant bins from short- and long-read metagenomic sequencing datasets.

    • Zhiguang Qiu
    • Li Yuan
    • Ke Yu
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • Orthogonal aminoacyl-tRNA synthetase/tRNA pairs are crucial for the incorporation of unnatural amino acids in a site-specific manner. Here the authors use rational chimera design to create multiple efficient pairs that function in bacterial and mammalian systems for genetic code expansion.

    • Wenlong Ding
    • Hongxia Zhao
    • Shixian Lin
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Protein tyrosine O-sulfation is crucial for biomolecular interactions. Here the authors report in vitro engineering and in vivo validation of a tyrosyl-tRNA synthetase mutant for the genetic encoding of sulfotyrosine in mammalian cells.

    • Xinyuan He
    • Yan Chen
    • Wei Niu
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The intermolecular addition of O-centred radicals to alkenes is a challenging endeavour in synthetic chemistry. Now ene-reductases are used to tame reactive O-radicals for intermolecular and enantioselective radical hydroalkoxylation involving a ground-state single-electron radical mechanism.

    • Bin Chen
    • Qiaoyu Zhang
    • Xiaoqiang Huang
    Research
    Nature Catalysis
    Volume: 8, P: 740-748
  • A study introduces AI2BMD, an artificial intelligence-based dynamics simulation program that uses protein fragmentation with a machine learning force field to accurately and efficiently model the folding and unfolding of large proteins.

    • Tong Wang
    • Xinheng He
    • Tie-Yan Liu
    ResearchOpen Access
    Nature
    Volume: 635, P: 1019-1027
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • There are no vaccines or antivirals available against enterovirus D68. Here, the authors report Jun6504 as a 2C inhibitor and show that it provides broad-spectrum antiviral activity against EV-D68, EV-A71, and CVB3 and potent antiviral efficacy in a neonatal neurological mouse model of EV-D68 infection.

    • Kan Li
    • Michael J. Rudy
    • Jun Wang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • A high-resolution, global atlas of mortality of children under five years of age between 2000 and 2017 highlights subnational geographical inequalities in the distribution, rates and absolute counts of child deaths by age.

    • Roy Burstein
    • Nathaniel J. Henry
    • Simon I. Hay
    ResearchOpen Access
    Nature
    Volume: 574, P: 353-358
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Cyclases that are able to build medium-sized rings are rare and mechanistic insights are sparse. Now, computational and experimental studies reveal how SoBcmB enables the construction of an eight-membered O-heterocycle over the intrinsically more favourable five-membered tetrahydrofuran in bicyclomycin biosynthesis.

    • Jun-Bin He
    • Lian Wu
    • Gong-Li Tang
    Research
    Nature Catalysis
    Volume: 6, P: 637-648
  • The use of an allosteric drug-design method resulted in the identification of a first-in-class cellularly active SIRT6 activator that induces cell-cycle arrest in the G0–G1 phase, thus suppressing proliferation in human hepatocellular carcinoma cells.

    • Zhimin Huang
    • Junxing Zhao
    • Jian Zhang
    Research
    Nature Chemical Biology
    Volume: 14, P: 1118-1126
  • Capper et al. uncover how bicarbonate binds to the anion exchanger 1 (AE1), elucidate how drugs inhibit AE1 via distinct mechanisms, and generate a series of AE1 inhibitors using structure-based drug discovery.

    • Michael J. Capper
    • Shifan Yang
    • Daniel Wacker
    Research
    Nature Structural & Molecular Biology
    Volume: 30, P: 1495-1504
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is implicated in a range of immunopathology. Here the authors show TIGAR drives inflammation and sepsis via activation of TAK1 and that disruption of TIGAR-TAK1 interaction in a murine model of sepsis reduces immunopathology.

    • Dongdong Wang
    • Yanxia Li
    • Jingjing Ben
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • The release of the C-terminal tail (CTT) of the Drosophila cryptochrome (dCry) upon illumination is central to light signal transduction in this flavin-containing photoreceptor, but the roles of flavin in the different ionic and protonation states are not fully understood. Here, the authors show that both flavin anionic semiquinone and anionic hydroquinone can trigger CTT release, while the formation of a small fraction of neutral semiquinone under neutral conditions, moderately supresses CTT release, but ensures fast recovery of dCry after light sensing.

    • Wenlong Xie
    • Mengqi Wan
    • Lei Xu
    ResearchOpen Access
    Communications Chemistry
    Volume: 8, P: 1-14
  • The response of CO2 release from soils to warming is enhanced at thermokarst sites due to the lower soil substrate quality and higher microorganism abundance than non-thermokarst locations, according to in situ warming experiments at an upland thermokarst on the Tibetan Plateau.

    • Guanqin Wang
    • Yunfeng Peng
    • Yuanhe Yang
    ResearchOpen Access
    Nature Geoscience
    Volume: 17, P: 532-538
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Analyses of the proportions of individuals who have completed key levels of schooling across all low- and middle-income countries from 2000 to 2017 reveal inequalities across countries as well as within populations.

    • Nicholas Graetz
    • Lauren Woyczynski
    • Simon I. Hay
    ResearchOpen Access
    Nature
    Volume: 577, P: 235-238
  • A deep understanding of multi-level assembly structures of conjugated polymers is crucial for developing high performance conjugated polymers and optoelectronic devices, however, it remains a challenge. Here, the authors report the morphological evolution of multi-level assembly of a model system of isoindigo-based conjugated polymer.

    • Yang-Yang Zhou
    • Yu-Chun Xu
    • Jian Pei
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-12
  • Here the authors report a strategy to directly capture substrates of lysine-modifying enzymes via post-translational modification (PTM)-acceptor residue crosslinking in living cells, enabling global profiling of substrates of PTM-enzymes and validation of PTM-sites in a straightforward manner.

    • Hao Hu
    • Wei Hu
    • Xiao-Hua Chen
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Molecular systems displaying aggregation-induced emission (AIE) have important biomedical and optoelectronic applications. Here the authors report a further mechanism for AIE, through aromaticity reversal from the ground state to the excited state, in the non-aromatic annulene derivative of cyclooctatetrathiophene.

    • Zheng Zhao
    • Xiaoyan Zheng
    • Ben Zhong Tang
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-10